
Logic Optimization of Majority-Inverter Graphs
Heinz Riener1, Eleonora Testa1, Winston Haaswijk1, Alan Mishchenko2,
Luca Amarú3, Giovanni De Micheli1, Mathias Soeken1

1EPFL, Lausanne, Switzerland
2UC Berkeley, CA, United States
3Synopsys Inc, Sunnyvale, CA, United States

Kurzfassung

Majority-Inverter Graphen (MIGs) sind eine multi-level Logikrepräsentation von Booleschen Funktionen mit be-
merkenswerten algebraischen und Booleschen Eigenschaften, die effiziente Logikoptimierungen über die Möglichkeiten
traditioneller Logikrepräsentationen erlauben. In dieser Arbeit, überblicken wir zwei moderne Logikoptimierungsmeth-
oden für MIGs: cut rewriting und cut resubstitution. Beide Algorithmen sind generisch und können auf beliebige graph-
basierte Logikrepräsentationen angewandt werden. Wir beschreiben sie in einem vereinheitlichen Framework und präsen-
tieren experimentelle Ergebnisse für Größenoptimierung von MIGs unter Verwendung der EPFL Benchmarks.

Abstract

Majority-inverter graphs (MIGs) are a multi-level logic representation of Boolean functions with remarkable algebraic
and Boolean properties that enable efficient logic optimizations beyond the capabilities of traditional logic representa-
tions. In this paper, we survey two state-of-the-art logic optimization methods for MIGs: cut rewriting and cut resubstitu-
tion. Both algorithms are generic and can be applied to arbitrary graph-based logic representations. We describe them in
a unified framework and show experimental results for MIG size optimization using the EPFL combinational benchmark
suite.

1 Introduction

Logic optimization of multi-level Boolean networks plays
an important role in automated design flows for digital sys-
tems and is responsible for substantial area and delay re-
ductions [1, 2]. These logic optimizations are typically car-
ried out on a simple and technology-independent represen-
tation of the digital logic. Particularly, homogeneous data-
structures, such as and-inverter graphs (AIGs) [3, 4]—
being composed of two-input ANDs and inverters—or
majority-inverter graphs (MIGs) [5]—being composed of
majority-of-three gates and inverters—have been proven to
be successful. Structural hashing on the intermediate rep-
resentation ensures that no two nodes have identical incom-
ing edges. Arbitrary Boolean networks can be transformed
into AIGs or MIGs, for which a repertoire of scalable opti-
mization techniques is available [6].
In particular MIGs, recently, received much attention due
to their remarkable algebraic and Boolean properties. On
the one hand MIGs share many characteristics of AIGs
such that simple and efficient optimization are possible,
on the other hand MIGs generalize AIGs and enables a
more compact representation of logic functions. The logic
AND x∧ y of two functions x and y can be represented
with a majority expression 〈0xy〉 by assigning the third in-
put to constant 0. Consequently, all AIGs are convertible
to MIGs without increasing the number of nodes. Figure 1
illustrates the compactness of MIGs by showing the func-
tion prime5(x1, . . . ,x5) = [(x5 . . .x1)2 is prime] represented

∧∧

∨

∨

∧

∧

∨

∧

∧

∨

∧

∧
x1 x3x2 x5x3

prime5(x1, . . . ,x5)

(a)

∧

M

M

∧ ∧

M

M

x1x3 x2 x5x4

prime5(x1, . . . ,x5)

(b)

Figure 1 Example of a (a) logic representation us-
ing AND, OR, and complemented edges and a (b)
MIG representation for function prime5(x1, . . . ,x5) =
[(x5 . . .x1)2 is prime]. Majority-3, AND, and OR nodes
are distinguished by label M, ∧, and ∨, respectively.
Complemented edges are drawn using dashed lines.

using ANDs, ORs, and complemented edges (on the left)
and as MIGs (on the right).
The focus of this paper lies on two Boolean optimization
techniques:

1) Boolean rewriting is a coarse-grained optimization
technique that iteratively selects small parts of a
Boolean network and replaces them with more compact
implementations in order to reduce the overall number
of nodes, while maintaining the global output functions

of the Boolean network.

2) Boolean resubstitution is a more fine-grained technique
that reexpresses the Boolean functions of particular
nodes using nodes already present in the Boolean net-
work. Nodes which are no longer used (including nodes
in the transitive fan-ins) can then be removed from the
Boolean network.

Effective implementation of both ideas are available for
AIGs [6, 7], which exploit peephole optimization tech-
niques using cuts, truth tables, and pre-computation in or-
der to scale to large Boolean networks.
We survey state-of-the-art generalization of Boolean
rewriting and Boolean resubstitution applicable to arbitrary
graph-based logic representations. In particular, we dis-
cuss cut rewriting [8], an on-the-fly rewriting technique
using exact synthesis, and cut resubstitution [9], a scalable
rule-based resubstitution technique. Both techniques are
DAG-aware and exploit structural hashing to obtain a gain
even when a smaller part of logic is replaced with a larger
one, by reusing already existing logic in the Boolean net-
work. The two techniques are implemented in the EPFL
logic synthesis library mockturtle1 [10]. In experiments
using the EPFL combinational benchmarks suite, we show
that the proposed techniques are capable of reducing the
benchmark’s size by 23.54% in 392.72s when applied in-
terleaved until convergence.

2 Preliminaries

A Boolean network N is a directed acyclic graph (DAG).
Each node corresponds to a logic gate. Each directed edge
(n,m) is a wire connecting node n with node m. The fanin,
respectively fanout, of a node n ∈ N are the incoming, re-
spectively outgoing, edges of the node. The primary inputs
(PIs) are the nodes of the Boolean network without fanin.
The primary outputs (POs) are the nodes of the Boolean
network without fanout. All other nodes in the Boolean
network are gates.
A cut is a pair (r,L) where r is a node, called root, and L is a
set of nodes, called leaves, such that 1) each path from any
primary input to r passes through at least one leaf and 2) for
each leaf l ∈ L, there is at least one path from a primary
input to r passing through l and not through any other leaf.
The cover N.cover(r,L) of a cut (r,L) of network N is the
set of all nodes n ∈ N that appear on a path from any l ∈ L
to r including r, but excluding the leaves.
A fanout-free cone (FFC) of a node r is a cut (r,L) such
that no node r′ ∈N.cover(r,L) with r′ 6= r has a parent node
that is outside of N.cover(r,L). The maximum fanout-free
cone (MFFC) of a node r is its largest FFC. In other words,
the MFFC of a node contains all the logic used exclusively
by the node. When a node is removed or substituted, the
logic in its MFFC can be removed [11].

1EPFL Logic Synthesis Lib., https://github.com/lsils/lstools-showcase

3 Cut Rewriting

Algorithm 1 shows the pseudo code of cut rewriting. The
algorithm starts by enumerating all cuts of network N with
cut size l and cut limit p using cut enumeration tech-
niques [12, 13, 11].
Since cuts found by cut enumeration may not be an FFC,
DAG-aware rewriting techniques [7] are used to compute
the gain of possible replacement candidates. After all re-
placement candidates and their gain have been computed,
the algorithm finds a set of replacement candidates that
maximizes the overall gain.
Next, an empty graph G(V,E) is initialized that will be
constructed when enumerating replacement candidates for
the cuts. The graph has vertices V for cuts, and an edge in
E if two cuts have overlapping logic and can therefore not
be replaced simultaneously. Each vertex is also assigned to
a root node r′ of a best replacement candidate and the po-
tential gain when being replace by r′. The replacements for
the cuts are constructed in the network with dangling root
nodes while computing the potential gains. On termina-
tion, all remaining dangling nodes are recursively removed
from the network.
For each cut (r,L) the algorithm enumerates possible re-
placements (r′,L) either looking the replacements up from
a pre-computed database of best implementations or on-
the-fly using SAT-based exact synthesis. The replacements
must not necessarily be optimum in size. The runtime of
exact synthesis can be controlled by setting thresholds on
the conflict limit of the SAT solver. For each replacement
candidate the gain is stored in a variable together with the
best replacement candidate [14]. If a replacement with root
r′ that leads to a gain can be found, a vertex (r,L,r′) for the
cut is added to G, i.e., the cut (r,L) can be replaced by the
cut (r′,L). Afterwards edges are added to G for each two
cuts that have overlapping covers. To obtain a good subset
of non-conflicting replacement candidates we heuristically
solve the maximum weighted independent vertex set prob-
lem on G with respect to the gain weights in the graph using
the greedy algorithm GWMIN [15], which provides an ap-
proximation guarantee of finding a solution with a weight
of at least 1

∆
α(G), where ∆ is the degree of G and α(G) is

the weight of the exact solution.

4 Cut Resubstitution

Algorithm 2 shows the pseudo code of cut resubstitution.
The algorithm iterates over all nodes r in a given net-
work N, identifies possible node replacements r′ of r using
existing logic in N, and resubstitutes r with r′ if the overall
number of nodes in the logic network is reduced.
For each node r, first a reconvergence-driven cut [6] is
computed restricted with cut size limit k. Next, from the
same node r, an MFFC M is constructed to estimate how
many nodes can be freed if r is replaced. Each node of
the cut, which is not part of M, is considered a potential
candidate for replacing r and added to a list D of divisors.
The local functions of the nodes n within the
reconvergence-driven cut are computed using truth

Input : Boolean network N, cut size k, cut limit p
Set C← N.enumerateCuts(k, p);
Set T ← N.simulateCuts(C);
Set G← (V = /0,E = /0);
foreach node r ∈ N do

Set M← N.computeMFFC(r);
if |M|= 1 then continue;
foreach leaves L ∈C(r) do

r′← N.computeBestReplacement(r,L,T);
if r′ 6=⊥ then G.addVertex(r,L,r′);

end
end
foreach L1 ∈C(r1) and L2 ∈C(r2) do

if N.cover(r1,L1)∩N.cover(r2,L2) 6= /0 then
G.addEdge(r1,L1)— (r2,L2);

end
end
Set V ′← G.maximalIndependentVertexSet();
foreach (r,L,r′) ∈V ′ do

N.replaceNode(r,r′);
end
return N;

Algorithmus 1 : Cut rewriting

Data : Logic network N, cut size k
Result : Optimized logic network
foreach node r ∈ N do

Set L← N.computeReconvDrivenCut(r,k);
Set M← N.computeMFFC(r,L);
Set D← N.collectDivisors(r,L,M);
Set T ← N.simulate(L,D);
Set r′← N.resubKernel(r,D,M,T);
if r′ 6=⊥ then N.replaceNode(r,r′);

end
return N;

Algorithmus 2 : Cut resubstitution

tables. The core of the algorithm is a rule-based resubstitu-
tion kernel that identifies possible replacements of r using
divisors in D. If a possible replacement r′ is found by the
resubstitution kernel, then r is replaced with r′ and the
Boolean network is updated. If no replacement is found
(i.e., the kernel returns ⊥), then the algorithm continues
with the next node.
The actual resubstitutions are computed by the resubsti-
tution kernel that compares divisors and suggests possi-
ble replacements. The resubstitution kernel contains those
parts of the resubstitution algorithm, which have to be cus-
tomized for the logic representation in use. In particular, a
resubstitution kernel defines resubstitution rules and filter-
ing rules:

1. A resubstitution rule is a simple, repetitive test to de-
termine if a given node can be reexpressed with divi-
sors using a fixed resubstitution pattern. For instance,
a 1-AND resubstitution rule tests for each pair of can-
didate divisors d1,d2 ∈ D with d1 6= d2 if r = d1∧d2.

2. A filtering rule implements a necessary or sufficient
condition to pre-filter the divisors in D with the ob-
jective to reduce the number of tests in resubstitu-
tion rules. For instance, in order to speed-up 1-AND

resubstitution, one may pre-compute those divisors
U ⊂ D that imply r, i.e.,

d ∈U iff d ∈ D∧d =⇒ r.

Filtering rules lead to performance improvements if
the filters can be leveraged by multiple resubstitution
rules.

For MIGs, we consider five resubstitution rules:

1. Constant resubstitution replaces r if equivalent to a
Boolean constant 0 or 1.

2. Divisor resubstitution replaces r if equivalent to a di-
visor in the current cut or its complement.

3. Relevance resubstitution replaces r if one of its chil-
dren can be replaced by a divisor.

4. 1-MAJ resubstitution replaces r with one newly added
majority gate using three divisors from the current cut.

5. 2-MAJ resubstitution replaces r with two newly added
majority gates using five divisors from the current cut.

5 Experiments

We have implemented the proposed algorithms in C++-17
using the EPFL logic synthesis library[10] mockturtle in a
generic way such that they can in principle be applied to
arbitrary logic representations.
We present MIG size optimization results for the EPFL
combination benchmark suite. We apply cut rewriting
(RW) using a database of best MIGs [8] and cut resubsti-
tution (RS) using a resubstitution kernel specifically de-
signed for MIGs [9], which adds at most two MIG nodes
to the Boolean network. Both techniques, RW and RS,
are applied to the Boolean network interleaved until con-
vergence. Table 1 is organized as follows: the first three
columns name the benchmarks (Name) and show the initial
size (Size) and depth (Depth) of the circuits. The next four
columns present the results after size optimization, i.e., the
reduced size (Size) and depth (Depth) of the benchmarks,
the number of iterations until convergence (It), and the
runtime (Time). One iteration refers to one execution of
cut rewriting and cut resubstitution. The last column (Im-
prov.) shows the size reduction when compared to the ini-
tial benchmarks. Overall, the proposed size optimization
flow achieves a size reduction of 23.54% (108954 MIG
nodes) in 392.72s.

6 Conclusion

We have presented two state-of-the-art methods for logic
optimizing of Boolean networks: cut rewriting and cut re-
substitution. Both techniques are generic and can be ap-
plied to arbitrary logic representations.
Both algorithms leverage DAG-awareness, cut-based com-
putations, and truth tables to scale to large Boolean net-
works.

Table 1 Size Optimization of EPFL Benchmarks

Benchmark (RW · RS)+ Improv.

Name Size Depth Size Depth It Time ηa(Size)
[s] [%]

adder 1020 255 512 130 3 0.14 49.80
arbiter 11839 87 11839 87 1 2.10 0.00
bar 3336 12 3073 13 2 0.65 7.88
cavlc 693 16 602 16 4 3.49 13.13
ctrl 174 10 81 10 3 0.04 53.45
dec 304 3 304 3 1 0.02 0.00
div 57247 4372 36154 4337 6 46.52 36.85
hyp 214335 24801 162416 16795 4 251.36 24.22
i2c 1342 20 1180 18 5 0.51 12.07
int2float 260 16 209 16 3 0.10 19.62
log2 32060 444 30387 422 6 25.07 5.22
max 2865 287 2301 208 4 1.02 19.69
mem_ctrl 46836 114 41757 113 5 25.58 10.84
multiplier 27062 274 24496 273 4 12.78 9.48
priority 978 250 683 181 5 0.39 30.16
router 257 54 244 53 2 0.07 5.06
sin 5416 225 4910 196 13 9.13 9.34
sqrt 24618 5058 11433 4131 5 14.05 53.56
square 18484 250 17137 131 4 8.03 7.29
voter 13758 70 4822 53 10 6.04 64.95

Total 462884 353930 392.72 23.54

We have described both algorithm in a unified framework
and have shown experimental results for MIG size opti-
mization using the EPFL combinational benchmark suite.

7 Acknowledgments

This research was supported by the Swiss National Sci-
ence Foundation (200021-169084 MAJesty); by the Euro-
pean Research Council in the project H2020-ERC-2014-
ADG 669354 CyberCare and by SRC contracts “SAT-
based methods for scalable synthesis and verification” and
“Deep integration of computation engines for scalability in
synthesis and verification”.

8 Literatur

[1] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-
Vincentelli, “Multilevel logic synthesis,” Proceed-
ings of the IEEE, vol. 78, no. 2, pp. 264–300, 1990.

[2] G. De Micheli, Synthesis and Optimization of Digital
Circuits. McGraw-Hill, 1994.

[3] L. Hellerman, “A catalog of three-variable Or-invert
and And-invert logical circuits,” TEC, vol. 12,
no. 3, pp. 198–223, 1963. [Online]. Available:
http://dx.doi.org/10.1109/PGEC.1963.263531

[4] A. Kuehlmann, V. Paruthi, F. Krohm, and
M. K. Ganai, “Robust Boolean reasoning
for equivalence checking and functional prop-
erty verification,” TCAD, vol. 21, no. 12,
pp. 1377–1394, 2002. [Online]. Available:
http://dx.doi.org/10.1109/TCAD.2002.804386

[5] L. Amarú, P. Gaillardon, and G. De Micheli,
“Majority-Inverter Graph: A New Paradigm
for Logic Optimization,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, vol. 35, no. 5, pp. 806–819, 2016.

[6] A. Mishchenko and R. K. Brayton, “Scalable logic
synthesis using a simple circuit structure,” in Int’l
Workshop on Logic and Synthesis, 2006, pp. 15–22.

[7] A. Mishchenko, S. Chatterjee, and R. K.
Brayton, “DAG-aware AIG rewriting a fresh
look at combinational logic synthesis,” in
DAC, 2006, pp. 532–535. [Online]. Available:
http://doi.acm.org/10.1145/1146909.1147048

[8] H. Riener, W. Hasswijk, A. Mishchenko, G. De
Micheli, and M. Soeken, “On-the-fly and DAG-
aware: Rewriting Boolean networks with exact syn-
thesis,” in DATE, 2019, p. To appear.

[9] H. Riener, E. Testa, L. Amaru, M. Soeken, and
G. De Micheli, “Size optimization of MIGs with
an application to QCA and STMG technologies,” in
NANOARCH, 2018.

[10] M. Soeken, H. Riener, W. Haaswijk, and
G. De Micheli, “The EPFL logic synthesis li-
braries,” Computer Science - Logic in Computer Sci-
ence, vol. abs/1805.05121, 2018. [Online]. Available:
http://arxiv.org/abs/1805.05121

[11] A. Mishchenko, S. Cho, S. Chatterjee, and
R. K. Brayton, “Combinational and sequen-
tial mapping with priority cuts,” in IC-
CAD, 2007, pp. 354–361. [Online]. Available:
http://dx.doi.org/10.1109/ICCAD.2007.4397290

[12] J. Cong and Y. Ding, “On area/depth trade-off
in LUT-based FPGA technology mapping,” TVLSI,
vol. 2, no. 2, pp. 137–148, 1994. [Online]. Available:
http://dx.doi.org/10.1109/92.285741

[13] J. Cong, C. Wu, and Y. Ding, “Cut ranking and prun-
ing: Enabling a general and efficient FPGA mapping
solution,” in FPGA, 1999, pp. 29–35. [Online]. Avail-
able: http://doi.acm.org/10.1145/296399.296425

[14] W. Haaswijk, A. Mishchenko, M. Soeken, and
G. De Micheli, “SAT based exact synthe-
sis using DAG topology families,” in Proceed-
ings of the 55th Annual Design Automation Confer-
ence, DAC 2018, San Francisco, CA, USA, June 24-
29, 2018, 2018, pp. 53:1–53:6. [Online]. Available:
https://doi.org/10.1145/3195970.3196111

[15] S. Sakai, M. Togasaki, and K. Yamazaki, “A
note on greedy algorithms for the maximum
weighted independent set problem,” Discrete Applied
Mathematics, vol. 126, no. 2-3, pp. 313–322, 2003.
[Online]. Available: https://doi.org/10.1016/S0166-
218X(02)00205-6

