
Complete Specification Mining
Gianluca Martino

TUHH
Hamburg, Germany

Heinz Riener
EPFL

Lausanne, Switzerland

Görschwin Fey
TUHH

Hamburg, Germany

ABSTRACT
In this paper, we start to define a framework for Complete Specifi-
cation Mining. We give a definition of functional completeness for
property generation methods. We then propose a naïve technique
for the generation of functionally complete sets of properties and
demonstrate empirically the feasibility of the method.

KEYWORDS
design undestanding, specification mining, reactive systems

1 INTRODUCTION
Specification mining is a matter of interest for industry, e.g. Jasper-
Gold Property Synthesis or BugScope, and for academia [9, 11]
because having tools which are able to generate sets of properties
can greatly help in the work of an engineer. For example in tasks
such as debugging of complex systems, update of legacy systems,
or reverse engineering of unknown designs. Moreover when only
a netlist representation of the circuit is available, the design intent
may be hard to regain if some optimizations are introduced. In this
case simulating the design is the only way for understanding the
behavior. Properties are able to encode an higher view, the design
intents, as a set of independent assertions.

For certain applications, a complete description of all the behav-
iors is required, i.e. high-level synthesis (HLS) requires a precise
behavioral specification and the design constraints in order to ob-
tain an RTL description. A possible use case for a property mining
tool which is able to produce a complete specification could be IP-
reuse. Starting from an existing design, using such a tool, it would
be possible to get a complete specification. Such specification could
be used to deduce parameters of the system. Similarly to HLS, mod-
ifying the desired parameters and reapplying synthesis techniques
would realize a different design, but with the same guaranties.

The problem of having functionally complete sets of properties
has been addressed with the goal of obtaining a full coverage when
verifying a design [5].

In our paper, we give a definition of functionally complete sets
of properties which applies specifically to property generation
methods. Our definition uses the idea of reactive synthesis for
the creation of a design, using the generated properties, which is
sequentially equivalent to the original one.

Most of the currently used property mining techniques rely on
simulation traces [9, 11]. This is a limitation because using traces
it is practically impossible to generate a functionally complete set
of properties, unless for very specific designs. This is due to the
fact that the amount of information needed to encode all possible
behaviors of a design in simulation traces grows very fast with the
size of the design.

We show that Syntax-Guided Property Enumeration [4] can gen-
erate functionally complete sets of properties. In our experiments

Property
enumerator

Syntactic
filter

Model
checker

Properties

netlist grammar netlist

1 2 3

Figure 1: Overview of the property generation process

we explain how we obtained the properties and demonstrate that
the set is functionally complete.

Our contributions are:
• the introduction of a notion of completeness which can be
used as a quality metric for the sets of properties generated
by specification mining tools;

• the proof that complete specification mining is feasible.

2 FUNCTIONAL COMPLETENESS OF
TEMPORAL LOGIC PROPERTIES

Informally, a set T of temporal logic properties is a specification
which describes the set of states that a system can go through. Such
a set is consistent if it contains only non-contradicting properties.
A reactive system is a system which maintains a continuous inter-
action with its environment. A consistent set of temporal logic
properties Tc is realizable if there exists a reactive system which
implements it [1]. Reactive synthesis tools [7] use a set of consistent
properties Tc to synthesize a reactive system which satisfies the
properties by construction.

Given two designs D1,D2 with the same input and output space,
it is possible to combine D1 and D2 into a product machine which
contains the two designs, running concurrently on the same inputs.
The output function Λ : S ×X → B, where S is the state space, X is
the input space and B = {0, 1} denotes the set of Boolean values, is
1 for a given state and input vector, if all pairwise corresponding
outputs of the two circuits assume the same value.
Sequential equivalence checking proves that Λ is 1 for every reach-
able state and input vector. [10]

Definition 1. Given a set T of temporal logic properties and a
design which models a Kripke structure S . A set T is functionally
complete with respect to S iff any realization RT ofT is sequentially
equivalent to S .

3 SYNTAX-GUIDED PROPERTY
ENUMERATION

We generalize the idea of SyGuS [2] in the context of temporal logic
and model checking. For a given Kripke structure S , we generate a



set T = φ1,φ2, . . . ,φn of temporal logic formulæ that are satisfied
by S , i.e., S |= φi for 1 ≤ i ≤ n, and obey to certain syntactic rules.
The formulæ are generated by unwinding a context-free grammarG
and model checked on S . Satisfied formulæ are kept and reported
to a user, failing formulæ are discarded.

Given a Kripke structure S , a context-free grammarG and some
termination criterion, the method for property generation works
as illustrated in Fig. 1:

(1) The process starts from the property enumerator. The enu-
meration requires as inputs the grammar G and the netlist
which encodes the Kripke structure S . As result, the property
enumerator block outputs formulæ until either all the search
space obtained from the current grammar is explored or the
termination criterion is reached.

(2) Every formula generated passes through the syntactic fil-
ter. This step uses syntactic rules to detect redundant for-
mulæ generated by the enumeration. If the formula does not
comply with the syntactic rules, it is discarded.

(3) We finally employ the model checker to obtain the set T of
properties that hold on S , which is realizable by construction.

Trace evaluation and vacuity detection [3] can be used in order
to discard properties not holding in the design without employing
the model checker (runtime improvement) and to remove all the
properties which contain redundant information (improvement on
the quality of the results), respectively.

An additional termination criterion, e.g., in form of a time limit
or an upper bound on the maximum length of formulæ, is required
to guarantee termination.

3.1 Grammar for completeness
A set of logic connectives is adequate iff all other connectives can
be expressed in terms of it. As a first approximation, using any ade-
quate set of logic connectives of a temporal logic which is expres-
sively complete [8], it is possible to generate a functionally complete
set of properties. Using Syntax-Guided Property Enumeration, it is
possible to obtain a functionally complete set of properties by using
a grammar which ensures that all possible states are represented.

In Fig. 2, we show the grammar used as input for this instantia-
tion of Syntax-Guided Property Enumeration for complete specifi-
cation mining: the grammar is composed of a subset of the logic
connectives of CTL and of the set AP of atomic predicates con-
taining the signals of the design. This grammar has been chosen
because it permits to simplify the synthesis procedure.

In Section 4, we show that it is possible to obtain a functionally
complete set of properties using this grammar, which contains a
set of logic connectives that is not adequate.

4 EXPERIMENTS
The experiments have been done in order to empirically prove that
complete specification mining is feasible. This has been achieved
by using the grammar defined in Section 3.1 and enumerating a
set of properties using Syntax-Guided Property Enumeration. The
synthesis of the design has been done by grouping all obtained
properties by the signal in P and using all the properties of each
group to create a truth table. Using the truth tables generated, a
design has been synthesized. Finally, using state-of-the-art tools,

1 S ::= p, p ∈ AP

2 P ::= (S) | (¬S)

3 L ::= (P ∧ P)

4 L ::= (P ∧ L)

5 F ::= AG(L → AX P)

Figure 2: CTL grammar used

the original design and the synthesized design have been checked
for sequential equivalence. As expected, the sequential equivalence
check has been successful.

The experiment has been done using an AIGER file, modeling
a counter, as a starting design. The design contains no inputs, 3
latches and one output. Using the procedure described, we have
obtained a functionally complete set of properties, composed of 22
formulæ, in less than 10 seconds.

5 CONCLUSION
In this paper we defined a criterion for deciding functional complete-
ness of sets of properties obtained through specification mining
methodologies. This notion of completeness is not related to any
of the previous metrics based on fault coverage [6].

We performed preliminary experiments in order to prove that a
method which does complete specification mining is feasible. We
demonstrated also that it is possible to design a grammar such
that, using Syntax-Guided Property Enumeration, a complete set
of properties is obtained.

In future work, more extensive experiments will be performed
using larger designs and different approaches for complete specifi-
cation mining.

REFERENCES
[1] M. Abadi, L. Lamport, and P. Wolper. 1989. Realizable and unrealizable specifica-

tions of reactive systems. In International Colloquium on Automata, Languages,
and Programming, (ICALP). Springer, 1–17.

[2] R. Alur, R. Bodík, E. Dallal, D. Fisman, P. Garg, G. Juniwal, H. Kress-Gazit, P.
Madhusudan, M. M. K. Martin, M. Raghothaman, S. Saha, S. A. Seshia, R. Singh,
A. Solar-Lezama, E. Torlak, and A. Udupa. 2015. Syntax-Guided Synthesis. In
Dependable Software Systems Engineering. 1–25.

[3] D. Bustan, A. Flaisher, O. Grumberg, O. Kupferman, and M. Y. Vardi. 2005. Regular
Vacuity. In Correct Hardware Design and Verification Methods, (CHARME). 191–
206.

[4] G. Fey, T. Ghasempouri, S. Jacobs, G. Martino, J. Raik, and H. Riener. 2018. Design
Understanding: From Logic to Specification. In International Conference on Very
Large Scale Integration, (VLSI-SoC). IFIP/IEEE.

[5] D. Große, U. Kühne, and R. Drechsler. 2008. Analyzing Functional Coverage in
Bounded Model Checking. Transactions on Computer Aided Design of Circuits
and Systems (TCAD) 27, 7 (2008), 1305–1314.

[6] Y. Hoskote, T. Kam, P.-H. Ho, and X. Zhao. 1999. Coverage estimation for symbolic
model checking. In Design Automation Conference (DAC). 300–305.

[7] S. Jacobs, N. Basset, R. Bloem, R. Brenguier, M. Colange, P. Faymonville, B.
Finkbeiner, A. Khalimov, F. Klein, T. Michaud, G. A. Pérez, J.F. Raskin, O. Sankur,
and L. Tentrup. 2017. The 4th Reactive Synthesis Competition (SYNTCOMP 2017):
Benchmarks, Participants & Results. In SixthWorkshop on Synthesis, (SYNT@CAV).
116–143.

[8] H. Kamp. 1968. Tense Logic and the Theory of Linear Order. Ph.D. Dissertation.
University of California, Los Angeles.

[9] D. Neider and I. Gavran. 2018. Learning Linear Temporal Properties.
arXiv:cs.LO/1806.03953

[10] C. A. J. van Eijk. 1998. Sequential equivalence checking without state space
traversal. In Design, Automation & Test in Europe, (DATE). IEEE, 618–623.

[11] S. Vasudevan, D. Sheridan, S. Patel, D. Tcheng, B. Tuohy, and D. Johnson. 2010.
Goldmine: Automatic assertion generation using data mining and static analysis.
In Design, Automation & Test in Europe, (DATE). IEEE, 626–629.

2


