On-the-fly and DAG-aware:
Rewriting Boolean Networks with Exact Synthesis

1

Heinz Riener! Winston Haaswijk!

LEPFL, Lausanne, Switzerland

Abstract—The paper presents a generalization of DAG-aware
AIG rewriting for k-feasible Boolean networks, whose nodes
are k-input lookup tables (k-LUTs). We introduce a high-effort
DAG-aware rewriting algorithm, called cut rewriting, which uses
exact synthesis to compute replacements on the fly, with support
for Boolean don’t cares. Cut rewriting pre-computes a large
number of possible replacement candidates, but instead of eagerly
rewriting the Boolean network, stores the replacements in a
conflict graph. Heuristic optimization is used to derive a best,
maximal subset of replacements that can be simultaneously ap-
plied to the Boolean network from the conflict graph. We optimize
LUT mapped Boolean networks obtained from the ISCAS and
EPFL combinational benchmark suites. For 3-LUT networks,
experiments show that we achieve an average size improvement of
5.58% and up to 40.19% after state-of-the-art Boolean rewriting
techniques were applied until saturation. Similarly, for 4-LUT
networks, we obtain an average improvement of 4.04% and up
to 12.60%.

I. INTRODUCTION

Logic optimization of multi-level Boolean networks plays
an important role in automated design flows for digital systems
and is responsible for substantial area and delay reductions [1],
[2]. These logic optimizations are typically carried out on a
simple and technology-independent representation of the digital
logic. Particularly, homogeneous data-structures, such as and-
inverter graphs (AIGs) [3], [4]—being composed of two-input
ANDs and inverters—or majority-inverter graphs (MIGs) [S]—
being composed of majority-of-three gates and inverters—
have been proven to be successful. Structural hashing on the
intermediate representation ensures that no two nodes have
identical incoming edges. Arbitrary Boolean networks can be
transformed into AIGs or MIGs, for which a repertoire of
scalable optimization techniques is available [6].

Boolean rewriting is an optimization technique that iteratively
selects small parts of the Boolean network and replaces them
with more compact implementations in order to reduce the
overall number of nodes, while maintaining the global output
functions of the Boolean network. An efficient implementation
of this idea is DAG-aware AIG rewriting [7], which exploits
structural hashing to find beneficial replacements that utilize
the existing logic within the network. Being DAG-aware allows
one to obtain a gain even when replacing a smaller part of
logic by a larger one, by reusing already existing logic in the
network. An efficient implementation of cut enumeration [8],
[9], [10] in combination with fast truth table computations and
a database of pre-computed replacements for a large number
of Boolean functions makes the technique scalable.

In this paper, we generalize DAG-aware rewriting and present
a DAG-aware rewriting algorithm that is directly applied to k-

Alan Mishchenko?

Giovanni De Micheli! Mathias Soeken!

2UC Berkeley, CA, USA

feasible Boolean networks (instead of AIGs). Replacements are
computed on the fly using exact synthesis. Exact synthesis of-
fers a more flexible, general, and scalable solution compared to
a pre-computed database, and recent achievements in SAT-based
exact synthesis enable its integration as an efficient engine in
various logic synthesis applications [11]. As a consequence,
the proposed approach is generic and capable of optimizing all
common technology-independent logic representation including
AIGs, MIGs, and XOR-based representations, as well as allows
one to obtain size optimizations after technology mapping, e.g.,
in LUT mapping for FPGAs. Moreover, on the fly synthesis
allows us to support don’t care conditions, for which pre-
computing a database is intractable. The approach is particularly
useful as a post-optimization techniques when other resynthesis
techniques saturate.

We call the new algorithm cut rewriting. The algorithm
operates in two phases. In the first phase, a large number
of possible replacement candidates is computed, but instead
of eagerly rewriting the Boolean network, they are stored
in a conflict graph. A node of the conflict graph denotes a
possible replacement labeled with its achieved node reduction.
An edge between two nodes denotes a conflict between two
replacements such that only one of them can be applied. In
the second phase, the conflict graph is used to determine a
globally optimal subset of replacements by solving a maximum
weighted vertex independent set problem. Note that, while we
use exact synthesis to compute optimum replacement networks,
the global optimization flow is heuristic.

We have implemented cut rewriting in a generic C++-17
open source Boolean network library and applied it to the
ISCAS and EPFL combinational benchmarks. Experiments
show that we achieve a reduction of 5.58% on average and up
to 40.19% when resynthesizing 3-LUT networks. This is after
state-of-the-art Boolean rewriting techniques, using the most
effective optimization scripts for k-feasible Boolean networks
in ABC [12], were applied until saturation. Similarly, for 4-
LUT networks we achieve an average reduction of 4.04% and
up to 12.60%

II. PRELIMINARIES
A. Boolean networks

A Boolean network N 1is a directed acyclic graph (DAG).
Each node corresponds to a logic gate. Each directed edge
(n,m) is a wire connecting node n with node m. The fanin,
respectively fanout, of a node n € N are the incoming,
respectively outgoing, edges of the node. A Boolean network
is k-feasible if the fanin size of all nodes is bounded by k.

This is the author-archived version of the paper. The original publication is available on IEEE XPlore under https://doi.org/10.23919/DATE.2019.8715185.
(© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

A k-LUT network is the most general k-feasible network in
which each gate can implement an arbitrary Boolean function.
The primary inputs (PIs) are the nodes of the Boolean network
without fanin. The primary outputs (POs) are the nodes of
the Boolean network without fanout. All other nodes in the
Boolean network are gates.

B. Cuts

A cut of a Boolean network is a pair (n, L), where n is a
node, called root, and L is a set of nodes, called leaves, such
that 1) each path from any PI to n passes through at least one
leaf and 2) for each leaf [€ L, there is at least one path from
a PI to n passing through [and not through any other leaf.
The cover Cover(n, L) of a cut (n, L) is the set of all nodes
n € N that appear on a path from any [€ L to n including n,
but excluding the leaves.

A fan-out free cone (FFC) of a node n is a cut ¢ = (n, L)
such that no node n’ € Cover(n, L) with n’ # n has a parent
node that is outside of Cover(n, L). The maximum fanout-free
cone (MFFC, [8]) of a node n is its largest FFC. Informally,
the MFFC of a node contains all the logic used exclusively by
the node. When a node is removed or substituted, the logic in
its MFFC can be removed [10].

C. Exact synthesis

Exact synthesis is the problem of finding the optimum
Boolean network given a specification, where network optimal-
ity is defined with respect to some cost function. For example,
we may want to find the network with the smallest number of
nodes when we are optimizing for area, or the network with
the fewest logic levels when optimizing for depth.

In recent years, there has been a substantial research
effort into solving this problem using SAT based meth-
ods [13], [14], [15], [11]. Given an m-tuple of functions
filzr, .. zn), .o, fm(x1, ..., 2,) over n variables, we can
encode the following question as a SAT formula F,. [16], [17]:

Does there exist a Boolean network N which imple-
ments fi,..., f,, using r gates?

If F, is SAT, then such a network exists. The satisfying
assignment corresponds to a network that implements the
functions using r gates. Conversely, if F,. is UNSAT, then
we have proven that no such network exists. Hence, if we
initialize r to 0 and increment it until we find a satisfiable
Fr, we can use a SAT solver to find a provably size-optimum
Boolean network for f1, ..., f,,. This process of size-optimum
exact synthesis is illustrated in Fig. 1. More generally, we can
re-formulate the above question with arbitrary cost functions
C.! We can then use a SAT solver to answer the question:

Does there exist a Boolean network N which imple-
ments f1,..., fm such that C(N) = r?

There exist different ways of encoding the exact synthesis
problem as SAT formulae, each having their own trade-offs.
Some have fewer variables than others, but they may do so
at the cost of adding more clauses. Unfortunately, there exists
no comprehensive comparison of the differences in runtime

! Assuming the cost functions can be encoded as CNF formulae

yes Found

optimum

Generate CNF
eLr < encoding F,

Fig. 1. Size-optimum SAT based exact synthesis.

Input: Boolean network N, cut size [, cut limit p
Output: Sorted list C(n) = {L1,..., Ly, } of leaves for every
node n in N
foreach input n in N do Set C(n) + {{n}};
foreach gate n in N in topological order do
Let ni,no,...,nm, be the fanin nodes of n;
foreach L, € C(n1), Lz € C(n2),...,Lm € C(nm) do
Set L=L1ULyU---ULp;
if |[L| > [then continue;
if 3L' € C(n) : L' C L then continue;
Remove all L’ from C(n) for which L C L;
Insert L into C(n) and keep C'(n) sorted;
if |C(n)| > p then
Remove the last |C'(n)| — p elements from C(n);

Algorithm 1: Cut enumeration

between different encodings. We refer the interested reader
to [16], [17], [13], [14], [15], [11] for detailed descriptions.

III. BOOLEAN REWRITING

In this section, we introduce a Boolean rewriting algorithm
called cut rewriting, which is directly applied to k-feasible
Boolean networks. Cut rewriting works in two phases. In
the first phase, potential network replacements for a large
number of subgraphs are pre-computed using exact synthesis.
Replacements that reduce the overall network size are stored in
a conflict graph. A node of the conflict graph denotes a possible
rewriting labeled with its achieved gain in node reduction.
An edge between two nodes denotes a conflict between two
replacements such that only one of them can be applied. In the
second phase, a maximal set of non-conflicting replacements
are heuristically selected from the conflict graph to maximize
the overall gain and applied to rewrite the Boolean network.

A. Cut enumeration

The proposed rewriting algorithm makes use of cut enu-
meration, which is an algorithm that can compute all cuts of
all nodes in a Boolean network. Since the number of cuts is
very large, the number of enumerated cuts is bounded by a
parameter [for the cut size and a parameter p for the maximum
number of cuts for each node. This technique is referred to as
priority cuts [10] as it selects the subset of all cuts with respect
to some cost function, in our case the number of the cuts’
leaves. The returned cut sets are also irredundant and do not
contain two cuts (n, L1) and (n, Ly) such that L; dominates
Lg, i.e., L1 Q L2.

Algorithm 1 sketches the cut enumeration procedure that is
used in the rewriting algorithm. It omits details on truth table
computation and cut pruning based on functional dependence.
The algorithm returns on termination a map from node n to

function DerefNode(n, L)
if n € L then return 0;
Set value < 1;
foreach child c of n do
Set ref(c) « ref(c) — 1;
if ref(c) = 0 then
\ Set value < value 4+ DerefNode(c, L);
return value;

Algorithm 2: Dereferencing a node

function RefNode(n, L)
if n € L then return 0;
Set value < 1;
foreach child c of n do
Set ref(c) + ref(c) + 1;
if ref(c) = 1 then
| Set value < value + RefNode(c, L);
return value;

Algorithm 3: Referencing a node

a sorted list of leaves C'(n) such that every pair (n, L) for
L € C(n) is a cut of the Boolean network. In addition to basic
cut function computation, we also compute the cut function’s
Boolean controllability don’t cares, which are based on the
local structure of the logic network.

B. DAG-aware rewriting

In this section, we review an efficient algorithm to compute
the gain of replacing a part of logic in a network by another
part of logic [7].

The algorithm to compute the gain makes use of reference
counting and assigns a value to each node in the network.
These values are initialized with the nodes’ fanout sizes. New
nodes that are added to the network for a possible replacement
will be assigned a reference count of 0. The reference count of
a node indicates how many other nodes require this node in the
network. In particular, a reference count of 0 means that the
node is not required in the network. The algorithm also exploits
structural hashing, i.e., nodes from a replacement candidate
that are already in the network will not be added another time,
and also its reference counter will not be changed.

For “simulating” the removal of a node n from a network,
we recursively decrement all predecessors in the transitive fanin
of the node and continue as long as the reference counters of a
child become O or a leaf node is reached. Algorithm 2 shows
the details. It receives as inputs the node n and the leaves of
acut L.

Adding a node to a network can be “simulated” by the inverse
algorithm to DerefNode, called RefNode (see Algorithm 3),
which will increment reference counters and continue on the
predecessors as long as the reference counter was 0 before
incrementing it, and stops otherwise or when it reaches a leave
node.

Fig. 2 shows the gain calculation of a replacement from one
cut into another: Fig. 2(a) shows two functionally equivalent
structures. The cut on the left is already contained in the
network shown in Fig. 2(b). Fig. 2(b) also shows the initial
reference counters which are equal to the fanout size of each

Z Y z z

Y

(a) Replacement candidate

(c) Deref original cut,
obtained value 2

(d) Insert replacement
candidate

(e) Ref replacement cut,
obtained value is 1.

(f) Deref replacement
cut, obtained value is 1.

(g) Ref original cut, ob-
tained value is 2.

Fig. 2. Example for estimating the insertion of a replacement cut using
reference counters.

node. Calling DerefNode on the top most AND gate changes
the references counters as shown in Fig. 2(c). In particular,
the OR gate in the middle of the network now has a reference
value of 0, meaning it is not required anymore after deleting
the cut. Together with the root node this leads to a value of
2 which is returned by DerefNode. Afterwards the logic for
the replacement cut is added in Fig. 2(d). Note that two of the
three gates are already present in the network and only one new
node is added, which is initialized with a reference value of 0.
All other reference values remain the same. Calling RefNode
on the root node of the inserted cut simulates an insertion of
the cut and leads to the reference values as in Fig. 2(e). The
function returns 1 for the increment of the root node. From
these two values we can derive that replacing the first cut by
the other will save 2 — 1 = 1 nodes. Since the cost of the
replacement should only be calculated and not actually be
performed one can undo the changes to the reference counters
by simply calling the inverse functions in inverse order, i.e.,
calling DerefNode on the root node of the replacement cut
and RefNode on the root node of the original cut leading

function DryReplace(N,n — n', L)
Set v1 < DerefNode(n, L);
Insert cut (n', L) into the network;
Set vz + RefNode(n’, L);
DerefNode(n', L);
RefNode(n, L);
return v; — v2;
Algorithm 4: Adding a new cut (n/, L) into the network and
calculating the gain when replacing an existing cut (n, L)

function MFFCSize(N, n)
Set L <— primary inputs of N;
Set v < DerefNode(n, L);
RefNode(n, L);
return v;

Algorithm 5: Compute the size of the MFFC of n

to the reference values as shown in Fig. 2(f) and Fig. 2(g),
respectively.

This example motivates a function called
DryReplace(N,n +— n/;L), as shown in Algorithm 4,
that inside a network N simulates the replacement of an
existing cut (n, L) with a new cut (n’, L) by using reference
counters. The algorithm does not change the reference values
of existing nodes in IV and all newly added nodes will be
assigned a reference value of 0. The function returns the gain
of replacing the existing cut with the new one. This gain may
be negative.

The routines RefNode and DerefNode can also be used
conveniently to compute the size of the MFFC of a node, as
shown in Algorithm 5. In here, the cut leaves L are the primary
inputs in order to find all logic in the node’s MFFC.

C. Cut rewriting

This section describes a rewriting algorithm that finds
replacement candidates for all enumerated cuts in a k-feasible
Boolean network. Since cuts found by cut enumeration may
not be an FFC, DAG-aware rewriting techniques are used to
compute the gain of possible replacement candidates. After all
replacement candidates and their gain have been computed, the
algorithm finds a set of replacement candidates that maximize
the overall gain. Algorithm 6 shows a pseudo code for the
algorithm, which is explained in detail in the remainder of this
section.

The algorithm starts by computing all cuts for a cut size [
and cut limit p. The cut size should be chosen according to
k. For example, [must be larger than £ to find replacement
candidates that lead to a gain, but if [is too large it can
significantly degrade the success rate of exact synthesis. We
experimentally evaluated that for £k = 2 and k = 3, cut sizes
Il =5 and | = 6 lead to good results, respectively.

Next, an empty graph G is initialized that will be constructed
when enumerating replacement candidates for the cuts. The
graph has vertices V for cuts, and an edge in E if two cuts
have overlapping logic and can therefore not be replaced
simultaneously. Also it has a vertex weight w that is assigned
the possible gain of a cut when being replaced by its best

Input: Boolean network N, cut size [, cut limit p
Set C' <+ CutEnumeration(N, [, p);
Set G+ (V=0,E=0,w,r);
foreach gate n € N do
if MEFFCSize(N,n) = 1 then continue;
foreach leaves L € C(n) do
Set bestGain < 0;
Set bestReplacement < A;
foreach replacement (n’, L) do
Set gain + DryReplace(N, n — n’, L);
if gain > bestGain then
Set bestGain <— gain;
Set bestReplacement < n’;
if bestReplacement # A then
Add vertex v = (n, L) to V;
Set w(v) < bestGain;
Set 7(v) < bestReplacement;
foreach L € C(nl) and Lo € C(nz) do
if Cover(ni, L1) N Cover(ngz, L) # 0 then
‘ Add edge (nl, Ll) — (nz, LQ) to F;
Set V' + MaximallndependentVertexSet(G);
foreach (n,L) € V' do
| Replace(N, n+— r(n), L);

Algorithm 6: Cut rewriting

found replacement. Finally, the mapping r maps a vertex to
the root node of the best replacement cut.

For each cut (n,L) the algorithm enumerates possible
replacements (n', L) using SAT-based exact synthesis. The
replacements must not necessarily be optimum in size. The
runtime of exact synthesis can be controlled by setting
thresholds on the conflict limit of the SAT solver [11]. For each
replacement candidate the gain is computed using DryReplace
and the best gain is stored in a variable gain together with
the best replacement candidate in bestReplacement. If a
replacement that leads to a gain can be found a vertex for
the cut is added to G and the mappings w and r are updated
with the gain and the replacement candidate, respectively.
Afterwards, edges are added to G for each two cuts that have
overlapping covers. To obtain a good subset of non-conflicting
replacement candidates we heuristically solve the maximum
weighted independent vertex set problem on G with respect
to weights w using the greedy algorithm GWMIN [18], which
provides an approximation guarantee of finding a solution with
a weight of at least %a(G), where A is the degree of G and
a(G) is the weight of the exact solution.

In order to speed up computation, we apply two effective
techniques. First, we skip all nodes whose MFFC size is 1,
i.e., the replacement of the node cannot lead to any positive
gain. Second, we cache all replacement candidates computed
by exact synthesis. That is, for every unique cut function,
replacements are only computed once and then stored in a
hash table. This table is particularly useful, when calling cut
rewriting repeatedly, because successive runs need to call exact
synthesis only on new cuts found by cut enumeration.

IV. EXPERIMENTS

We implemented our approach in C++-17 using the EPFL
logic synthesis libraries [19] mockturtle’ and percy’ in a
generic way such that it can in principle be applied to any
k-LUT network. Exact synthesis has the most impact to
performance, and our experiments indicate that using the
current implementation, practical and scalable results can be
achieved.

We applied cut rewriting to improve the size of 3-LUT
and 4-LUT networks for the combinational instances in the
ISCAS benchmarks and the arithmetic instances in the EPFL
benchmarks [20]. The baseline networks are obtained by
performing a LUT mapping using ‘sif -K k’ with k € {3,4}
in ABC [12], respectively. In case of the EPFL benchmarks,
we chose the best-known size-optimized 6-LUT benchmarks
as a starting point.* As state-of-the-art area optimization we
apply a synthesis script that interleaves priority-cut-based
LUT mapping (‘s«if’) [10], structural choices (‘sdch’ and
‘ssynch2’) [21], [22], and Boolean network optimization and
resynthesis (‘emfs’) [23]. We apply the synthesis script

&st;
&st;

&if -m -a -K k;
&1f —-m —-a -K k;

&mfs -W 10;
&mfs -W 10

&synch2;
&dch;

with the respective k& parameter ten times and pick the
best result that was encountered during all iterations. This
optimization method is called MFS in the remainder.

We call the proposed cut rewriting algorithm repeatedly until
no further gain in area can be achieved. We apply our approach
as a post-optimization approach on the optimized networks
obtained by MFS.

Tables I and II show the experimental results for 3-LUTs and
4-LUTs, respectively. The table lists the baseline, the results
obtained after MFS, and the results obtained by applying cut
rewriting after MFS. For each it lists the number of gates and
the number of logic levels. It also lists runtime in seconds. In
case of MFS + Cut rewriting it only lists the time required
by cut rewriting. The last column shows the improvement
that can be obtained by calling cut rewriting on the results
already optimized by MFS. The cut size and cut limit for cut
enumeration are [= 6 and p = 12, respectively. We compute
one replacement candidate for each cut using exact synthesis
with a conflict limit of 1000.

The strength of cut resynthesis becomes evident when used
as a post-optimization method after MFS has been tried heavily
to find the best network. On top of the significantly improved
results, cut rewriting can find additional improvement—often
even with a comparably small runtime overhead. The average
improvement is 5.58% and 4.04% when resynthesizing 3-LUT
and 4-LUT networks, respectively. The best improvement is
achieved for the 128-bit adder, which improved by 40.19%
when considering 3-LUT networks. Starting from a baseline
implementation that has 67 logic levels it manages to regain
the size-optimal carry ripple implementation with one sum gate

2see github.com/lsils/mockturtle
3see github.com/whaaswijk/percy
4see github.com/lsils/benchmarks

(XOR-3) and one carry gate (majority-3) for each pair of input
bits.

V. CONCLUSION

We have presented a DAG-aware rewriting algorithm directly
applied to k-feasible Boolean networks. Instead of using simple
transformations, a SAT-based exact synthesis engine with
support for Boolean don’t cares is employed for rewriting
existing logic. Moreover, instead of applying replacements
ad-hoc, all possible gains are stored in a conflict graph,
from which a maximal subset of compatible replacements is
computed. We show size improvements up to 40.19% and
12.60% when resynthesizing 3-LUT networks and 4-LUT
networks, respectively. Today’s exact synthesis methods are not
strong enough to efficiently find compact 6-LUT networks for
functions with 8—10 variables. Improvements to the scalability
of exact synthesis can be directly exploited by our proposed
approach.

Acknowledgments: This research was supported by the Swiss
National Science Foundation (200021-169084 MAJesty), by the
European Research Council in the project H2020-ERC-2014-
ADG 669354 CyberCare and by SRC contracts “SAT-based
methods for scalable synthesis and verification” and “Deep
integration of computation engines for scalability in synthesis
and verification.”

REFERENCES

[11 R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli,
“Multilevel logic synthesis,” Proceedings of the IEEE, vol. 78, no. 2, pp.
264-300, 1990.

[2] G. De Micheli, Synthesis and Optimization of Digital Circuits. McGraw-
Hill, 1994.

[3] L. Hellerman, “A catalog of three-variable Or-invert and And-invert

logical circuits,” IEEE Trans. Electronic Computers, vol. 12, no. 3, pp.

198-223, 1963.

A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust boolean

reasoning for equivalence checking and functional property verification,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 21, no. 12, pp. 1377-1394, 2002.

[5] L. Amari, P. Gaillardon, and G. De Micheli, “Majority-Inverter Graph: A
New Paradigm for Logic Optimization,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 35, no. 5, pp.
806-819, 2016.

[6] A. Mishchenko and R. K. Brayton, “Scalable logic synthesis using a

simple circuit structure,” in Int’l Workshop on Logic and Synthesis, 2006,

pp. 15-22.

A. Mishchenko, S. Chatterjee, and R. K. Brayton, “DAG-aware AIG

rewriting a fresh look at combinational logic synthesis,” in Design

Automation Conference, 2006, pp. 532-535.

[8] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: Enabling a

general and efficient FPGA mapping solution,” in Int’l Symp. on Field

Programmable Gate Arrays, 1999, pp. 29-35.

J. Cong and Y. Ding, “On area/depth trade-off in LUT-based FPGA

technology mapping,” IEEE Trans. VLSI Syst., vol. 2, no. 2, pp. 137-148,

1994.

A. Mishchenko, S. Cho, S. Chatterjee, and R. K. Brayton, “Combinational

and sequential mapping with priority cuts,” in Int’l Conf. on Computer-

Aided Design, 2007, pp. 354-361.

W. Haaswijk, A. Mishchenko, M. Soeken, and G. De Micheli, “SAT

Based Exact Synthesis Using DAG Topology Families,” in Proceedings

of the 55th Annual Design Automation Conference, ser. DAC 18, 2018.

R. K. Brayton and A. Mishchenko, “ABC: an academic industrial-strength

verification tool,” in Computer Aided Verification, 2010, pp. 24-40.

W. Haaswijk, M. Soeken, L. G. Amaru, P-E. Gaillardon, and

G. De Micheli, “A novel basis for logic optimization,” in Asia and

South Pacific Design Automation Conference, 2017, pp. 151-156.

[4

=

[7

—

[9

—

[10]

(1]

[12]

[13]

TABLE I
EXPERIMENTAL RESULTS FOR 3-LUT RESYNTHESIS

Name Baseline MFS MFS + Cut rewriting Improvement

PIs POs gates levels gates levels time gates levels time
c432 36 7 113 16 71 19 0.66 68 22 1.17 4.23%
c499 41 32 112 9 102 9 2.27 102 9 0.51 0.00%
c880 60 26 175 13 141 14 1.87 139 14 2.65 1.42%
c1355 41 32 112 9 102 9 1.79 102 9 0.55 0.00%
€2670 157 64 304 11 216 12 2.02 211 14 2.32 2.31%
¢3540 50 22 563 19 316 20 5.33 309 20 9.16 2.22%
c5315 178 123 838 14 521 15 5.89 510 15 12.01 2.11%
c6288 32 32 733 31 748 33 30.81 748 33 0.02 0.00%
c7552 207 108 666 14 540 32 6.12 522 34 17.32 3.33%
adder 256 129 827 67 428 85 4.92 256 128 1.08 40.19%
bar 135 128 1018 7 896 7 10.13 896 7 0.00 0.00%
div 128 128 13202 2299 8465 2170 136.41 7010 2290 4030.98 17.19%
log2 32 32 21759 216 15927 201 588.34 15146 195 22650.17 4.90%
max 512 130 891 249 823 249 9.56 808 251 5.25 1.82%
multiplier 128 128 18983 147 11346 141 366.53 11196 145 9771.94 1.23%
sin 24 25 4334 99 2989 102 907.73 2851 99 308.27 4.62%
sqrt 128 64 12918 2116 8031 2147 124.13 7010 2174 3115.73 12.71%
square 64 128 15290 168 6931 165 446.19 6789 166 188.10 2.05%
Average 5.58%
Sum 2650.00 40117.26

TABLE II
EXPERIMENTAL RESULTS FOR 4-LUT RESYNTHESIS

Name Baseline MFS MFS + Cut rewriting Improvement

PIs POs gates levels gates levels time gates levels time
c432 36 7 100 10 52 16 1.52 52 16 0.19 0.00%
c499 41 32 78 5 78 6 5.17 78 6 0.02 0.00%
c880 60 26 125 9 108 14 4.14 106 14 0.29 1.86%
c1355 41 32 78 5 80 6 5.74 80 6 0.21 0.00%
€2670 157 64 204 7 178 9 7.98 161 9 0.26 9.55%
¢3540 50 22 348 12 236 16 14.70 231 16 1.69 2.12%
c5315 178 123 506 10 425 12 17.28 383 12 1.14 9.88%
c6288 32 32 503 25 494 31 89.78 494 31 0.10 0.00%
c7552 207 108 520 8 427 24 17.40 424 24 1.11 0.70%
adder 256 129 529 44 341 84 15.96 298 127 0.06 12.60%
bar 135 128 1018 7 896 7 35.98 896 7 0.00 0.00%
div 128 128 9597 1486 5113 2007 390.33 4681 2069 27.28 8.45%
log2 32 32 14021 128 11659 172 1993.53 10761 166 14097.98 7.70%
max 512 130 1074 135 785 245 27.62 784 245 1.02 0.13%
multiplier 128 128 11256 98 8264 138 1223.32 8084 137 1893.17 2.61%
sin 24 25 2921 62 2172 88 4393.63 2056 87 60.49 5.34%
sqrt 128 64 9139 1386 5004 1945 384.45 4534 1992 30.46 9.21%
square 64 128 8843 104 5737 132 1153.30 5588 140 35.44 2.60%
Average 4.04%
Sum 9781.84 16150.65

[14]

[15]

[16]

(17]

(18]

(19]

M. Soeken, L. G. Amaru, P.-E. Gaillardon, and G. De Micheli, “Exact
synthesis of majority-inverter graphs and its applications,” IEEE Trans. on
CAD of Integrated Circuits and Systems, vol. 36, no. 11, pp. 18421855,
2017.

M. Soeken, G. De Micheli, and A. Mishchenko, “Busy man’s synthesis:
Combinational delay optimization with SAT,” in Design, Automation
and Test in Europe, 2017, pp. 830-835.

N. Een, “Practical SAT - a tutorial on applied satisfiability solving,” 2007,
slides of invited talk at FMCAD.

A. Kojevnikov, A. S. Kulikov, and G. Yaroslavtsev, “Finding efficient
circuits using SAT-solvers,” in Int’l Conf. on Theory and Applications
of Satisfiability Testing, 2009, pp. 32-44.

S. Sakai, M. Togasaki, and K. Yamazaki, “A note on greedy algorithms
for the maximum weighted independent set problem,” Discrete Applied
Mathematics, vol. 126, no. 2-3, pp. 313-322, 2003.

M. Soeken, H. Riener, W. Haaswijk, and G. De Micheli, “The EPFL

[20]

(21]

[22]

[23]

logic synthesis libraries,” in Int’l Workshop on Logic and Synthesis, 2018,
arXiv preprint arXiv:1805.05121.

L. G. Amaru, P-E. Gaillardon, and G. De Micheli, “The EPFL combi-
national benchmark suite,” in Int’l Workshop on Logic and Synthesis,
2015.

S. Chatterjee, A. Mishchenko, R. K. Brayton, X. Wang, and T. Kam,
“Reducing structural bias in technology mapping,” IEEE Trans. on CAD
of Integrated Circuits and Systems, vol. 25, no. 12, pp. 2894-2903, 2006.
A. Mishchenko, S. Chatterjee, and R. K. Brayton, “Improvements to
technology mapping for LUT-based FPGAs,” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 26, no. 2, pp. 240-253, 2007.

A. Mishchenko, R. K. Brayton, J. R. Jiang, and S. Jang, “Scalable
don’t-care-based logic optimization and resynthesis,” ACM Trans. on
Reconfigurable Technology and Systems, vol. 4, no. 4, pp. 34:1-34:23,
2011.

