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ABSTRACT
This paper proposes a novel methodology for multi-level logic syn-
thesis that is independent from a specific graph data-structure,
but formulates synthesis procedures using an abstract concept
definition of a logic representation. The idea is to capture the
essence of optimisations in a general manner and tailor only small
performance-critical sections to the underlying logic representa-
tion. This generic, yet scalable approach, saves many man-months
of development time and enables logic synthesis and technology-
mapping procedures parameterised in a logic representation. We
present the generic design methodology and demonstrate its prac-
ticality by providing a complete state-of-the-art logic synthesis
flow.
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1 INTRODUCTION
Logic synthesis is a core engine in all Electronic Design Automa-
tion (EDA) tools. Its purpose is to express a functional design speci-
fication in terms of logic gates, while optimizing area, delay, and/or
power—with the major challenge to algorithmically scale-up to to-
day’s design sizes. State-of-the-art logic synthesis algorithms [1, 2]
achieve this goal by operating in three steps: (1) The design specifi-
cation is expressed as a simple, technology-independent logic repre-
sentation. (2) Fast peephole optimization techniques are repeatedly
applied to optimize the logic representation. (3) The optimized logic
is mapped to a technology-specific representation.

The most widely used technology-independent logic represen-
tation are And-inverter graphs (AIGs) [3], a homogeneous graph
data-structure consisting of two-input AND gates and inverters. In
recent years, several drop-in replacements for AIGs have been pro-
posed: Majority-inverter graphs (MIG) [4, 5] consist of three-input
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majority gates and inverters. Their usage is motivated by the fact
that many nano-emerging technologies, e.g., spin-wave devices or
quantum-dot cellular automata, can be realized in terms of major-
ity voters, such that technology-mapping for these technologies
is significantly simplified. Moreover, the majority operation en-
ables several novel optimizing transformations on the intermediate
logic, which led in previous work to impressive delay reductions
for arithmetic-intensive benchmark circuits. Alternatively, XOR-
enhanced logic representations, such as Xor-And graphs (XAG) [6]
or Xor-majority graphs (XMG) [7], extend AIGs and MIGs with a
two-input and three-input XOR gate, respectively. They offer an
improved compactness from which especially rewriting techniques
beneft that repeatedly match small sub-networks and replace them
with their size-optimal representations.

As of today, no logic synthesis tool is entirely based on MIGs,
XAGs, or XMGs. In contrast, the advantages of these individual
graph data-structures have been evaluated for specific optimizing
procedures, such that the overall optimization potential of the rep-
resentations remain unknown. The development of a sophisticated
and complete state-of-the-art logic synthesis flow, however, can
take several man-months for each of them.

In this paper, we propose a novel methodology for logic synthesis
that is independent from a specific graph data-structure. Instead, our
methodology formulates optimization procedures using an abstract
concept definition of a logic representation. The idea is to capture
the common essence of logic synthesis and technology-mapping
procedures in a generic way and to tailor only small performance-
critical sections to specific graph data-structures. We propose the
concept definitions and present the four most common optimiza-
tions (rewriting, resubstitution, refactoring, and balancing) as well
as k-LUT mapping generically applicable to any graph-based multi-
level logic representation. We have implemented the generalized
approach in C++ using template meta-programming, which allows
us to make a fair comparison of the advantages of the different
logic representations. We propose a generic resynthesis flow for
area optimization similar to the state-of-the-art optimization script,
compress2rs, in the logic synthesis package ABC [2]: (1) in a
comparison with ABC, we show that the generic resynthesis flow
using AIGs as logic representation is competitive with state-of-the-
art logic synthesis algorithms, that are specifically designed for the
optimization of AIGs; (2) using this generic approach, we propose,
for the first time, a complete resynthesis flow for MIGs and XAGs;
(3) we further present a fair comparison of AIGs, MIGs, and XAGs in
a complete resynthesis flow and show that the individual logic rep-
resentations are capable of achieving similar improvements (30.04%,
27.78%, and 31.39% for AIGs, MIGs, and XAGs, respectively) when
compared after mapping into 6-input look-up tables (LUTs).
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Figure 1: Stacked 4-layered architecture for supporting logic
synthesis independent from a specific graph data-structure.

2 SCALABLE GENERIC LOGIC SYNTHESIS
Modern academic multi-level logic synthesis tools typically rely on
a single logic representation, such as AIGs, as the basis for most
optimization efforts. Using this representation, they are able to
implement fundamental logic synthesis operations in an efficient
and scalable way. The scalability of this approach comes from the
compactness of the underlying logic representation, allowing such
tools to represent large logic networks. Furthermore, the represen-
tation is often chosen so as to allow for the efficient implementation
of fundamental techniques such as cut enumeration, Boolean rea-
soning, and DAG-awareness. In this section, we propose a generic
methodology for logic synthesis, which generalizes the conven-
tional approach described above. Our methodology is independent
from any particular logic representation while maintaining effi-
ciency and scalability. It allows users to tweak performance and to
implement representation-specific code when necessary.

The central idea behind our method is to describe logic synthesis
techniques generically, in terms of an abstract concept definition of
logic networks. This abstract definition is applicable to any graph-
basedmulti-level logic representation. Besides being generic, our ap-
proach is scalable, because it relies on the same efficient techniques
for cut enumeration, fast truth table computation, and sophisticated
exact synthesis engines as the conventional single-representation
approach. In the remainder of this section we describe our generic
methodology in more detail.

2.1 Genericity
The backbone of the proposed methodology is a stacked 4-layered
architecture, depicted in Fig. 1. The base layer shown on the bottom
provides an abstract concept definition of a network API, called Net-
work Interface API, which defines a logic representation in terms of
primary inputs, primary outputs, and logic gates. Naming conven-
tions for types and methods ensure that all network interfaces can
be used in the same way. Some of these conventions are mandatory,
while others are optional. Mandatory interfaces are, for instance,
methods to iterate over input, output or gates, which have to be
provided for a logic representation; an example of an optional in-
terface is a method that allows its user to query the level of a node
in the logic representation, which may or may not be provided by
a logic representation. The network interface API does not provide
an implementation of a logic network.

Algorithms, the second layer of the methodology, are generically
formulated on top of the network interface API. An algorithm takes
as input an instance of a network type, that is required to imple-
ment all mandatory and some optional interface as defined by the
algorithm. The algorithms make use of the network interface API,

Data: Logic network N
Result: depth d of the logic network
foreachInput n in N do

set ℓ(n) ← 0;
foreachGate n in N do

set ℓ(n) ← 0;
foreachFanin n′ of n do

set ℓ(n) ← max(ℓ(n), ℓ(n′));
set ℓ(n) ← ℓ(n) + 1;

set d ← 0;
foreachOutput n in N do

set d ← max(d, ℓ(n));
return d
Algorithm 1: Generic algorithm to compute logic depth

but make no assumptions on the internal implementations of the
input networks. For instance, no algorithm depends on how gates of
the network are internally represented. Rather, gates are accessed
through the network API. Many algorithms in logic synthesis, such
as algorithms for computing cuts or maximum fanout-free cones,
can be formulated easily using graph-based analysis procedures
without requiring knowledge of the internal logic network. Algo-
rithm 1 shows an example algorithm to compute the depth of a
logic network. For this task only four methods of the network API
are required: foreachInput to iterate over all primary inputs, fore-
achGate to iterate over all gates, foreachFanin to iterate over all
fanins of a gate, and foreachOutput to iterate over all outputs of a
network.

The third layer, network implementations, consists of actual im-
plementations of logic networks that provide concrete definitions
of the network interface API, e.g., And-inverter graphs, Majority-
inverter graphs, or k-LUT networks. In particular, the network
implementations define the node type used to represent logic and a
storage which contains the generated nodes. Technical details such
as structural hashing are implemented on this layer. Algorithms
from the second layer can be called on instances of the network
types, if they implement the required interfaces. Static compile-
time assertions ensure that compilation only succeeds for those
network implementations that do provide all required types and
methods. This further avoids dynamic polymorphism, which adds
unnecessary overhead to the runtime.

Finally, on the last layer, performance tweaking, offers the pos-
sibility to improve performance by specializing some algorithmic
details for specific network types based on their internal imple-
mentation. This is done for each network individually and without
affecting the generic implementation nor the implementation of
other network types.

This methodology provides a generic approach to logic synthe-
sis, while offering its user’s the possibility to tweak algorithmic
performance if indispensable.

2.2 Scalability
Using the stacked 4-layer architecture described in Section 2.1, we
implement efficient and scalable optimization methods in a way
that is representation-agnostic. In this section, we describe fun-
damental principles and algorithms that we have implemented in
this generically scalable way. They form the basis for the complete
synthesis flow developed in Section 3.
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2.2.1 Cut Enumeration. A common operation in logic optimiza-
tion algorithms is the partitioning of the global subject graph into
smaller subnetworks. The smaller size of these subnetworks al-
lows us to perform peephole optimizations, in which we can exert
control by, for example, restricting the number of inputs to subnet-
works. This makes them more amenable to various optimizations
methods, such as balancing, resubstitution, or exact synthesis. Cut
enumeration is a common method to create such partitions.

Our methodology supports two distinct types of cut enumer-
ation: (i) bottom-up enumeration through the Cartesian product
method [8], and (ii) top-down cut enumeration based on recon-
vergence-driven cuts [1]. Both of these methods are suitable for
different optimization algorithms. For instance, rewriting methods
commonly use bottom-up cut enumeration, whereas top-down cut
enumeration is used by resubstitution algorithms. Moreover, both
of these methods are suitable for generic implementation, as they
rely essentially only on notions of fanin connectivity. Hence, our
generic DAG-based approach supports this in a straightforward
way by defining the appropriate fanin interface functions.

2.2.2 Boolean Reasoning. Peephole optimization methods focus
on repeatedly optimizing small sections of a logic network, e.g., a
cut, with a restricted number of inputs. If the number of inputs does
not exceed 16−20, explicit, exhaustive simulation techniques based
on the usage of truth tables outperform heavy-weight Boolean
reasoning techniques. As a consequence, truth tables can be used
as the basis for various optimization methods.

In particular, they allow for the efficient implementation of an-
other important Boolean reasoning method: SAT-based exact syn-
thesis [9], a powerful optimization technique that computes opti-
mum representations of Boolean functions. As this technique finds
exact optima using a SAT solver, it does not scale to large func-
tions. However, it is suitable for use as a peephole optimization,
e.g. for subnetworks with up to 8 inputs. Our generic implementa-
tion supports state-of-the-art SAT-based exact synthesis, including
those based on families of DAG topologies such as fences [10].
Moreover, through its specialization mechanism, our method also
supports exact synthesis encodings that are tuned to specific logic
representations like AIGs or XAGs.

2.2.3 DAG-Awareness. Many logic optimization algorithms, such
as balancing or rewriting, can be viewed as a restructuring of the
DAG representation of the logic network, where local subnetworks
are replaced by new structures. We generally only want to replace
a subnetwork by a new structure if the replacement leads to some
positive gain.1 In theory, this gain may be expressed by an arbitrary
cost function. In practice, we are interested in objectives such as
size optimization, so we focus on reducing the overall number of
nodes in the subject graph. DAG-awareness refers to the notion
that the gain of a replacement structure takes into account both the
existing graph structure as well as the replacement structure. In
doing so, it can find opportunities for logic sharing, thus enabling
more efficient replacements.

To compute replacement gains, we make use of reference count-
ing and assign a value to each node in the network. These values
are initialized with the nodes’ fanout sizes. New nodes that are
added to the network for a possible replacement will be assigned a
reference count of 0. The reference count of a node indicates how

1Under some circumstances it is advantageous to also allow zero-cost replacements.

many other nodes require this node in the network. In particular, a
reference count of 0 means that the node is not required in the net-
work. Thus, reference counting can be used to measure how many
nodes a given replacement removes from the network. Our generic
implementation considers structural hashing (for those network
types that support it). In other words, nodes from a replacement
candidate that are already in the network will not be added another
time. Moreover, their reference counters will not be changed. To
simulate the removal of a node n from a network, we recursively
decrement all predecessors in the transitive fanin of the node and
continue as long as the reference counters of a child become 0 or a
leaf node is reached. Full details for our DAG-aware replacement al-
gorithm are outside the scope of this paper. We refer the interested
reader to [11] and [12].

2.3 Generic Logic Optimization Algorithms
In the following, we present the four most common optimizations
(rewriting, refactoring, resubstitution, and balancing) generically
applicable to any graph-based multi-level logic representation.

2.3.1 Balancing. Balancing is a technique to reduce the number
of logic levels in a network [13]. Depending on the application,
balancing may or may not permit to increase the network size. In
this paper, we consider balancing methods that do not increase
the network size. A generic balancing method is tree-balancing. So
far, tree-balancing has been described and implemented in terms
of AIGs [13], exploiting the associativity of the AND operation,
x1 ∧ (x2 ∧ x3) = (x1 ∧ x2) ∧ x3. However, sufficient requirements
for tree-balancing are commutativity and associativity of the gate
function. This observation allows us to implement a generic bal-
ancing function. For example, if f (x1, f (x2,x3)) = f (f (x1,x2),x3),
then we can rewrite the expression

f (x1, f (x2, f (x3,x4))) into f (f (x1,x2), f (x3,x4)), (1)
which requires one fewer logic level while using the same number
of operations. This property holds for AND gates, XOR gates, and
for Majority gates, if all operations share a common input value,
i.e., ⟨x1u⟨x2ux3⟩⟩ = ⟨⟨x1ux2⟩ux3⟩. The following illustration shows
balancing applied to three AND gates.

∧

∧

∧

∧

∧

∧

x3 x4

x2

x1

x1 x2 x3 x4

Algorithm 2 illustrates a generic tree-balancing algorithm. It per-
forms two steps. In the first step, it groups together gates of the
same type if they permit commutativity and associativity, and if
the group does not contain complemented edges or external fanout,
except for the root node. In the second step, the gates and the
group are rearranged by approaching a balanced tree by applying
the principle in (1), by additionally taking into account the arrival
times of the inputs. While the first step is unique, different tree
decompositions are possible in the second steps. However, none of
the possible decompositions leads to an increase in gate count. On
the contrary, a tree decomposition can lead to gates that are already
in the network, and logic sharing will decrease the overall gate
count. Besides methods to iterate through the gates of a network,
the balancing algorithm requires that the methods gateFunction and
substituteNode are implemented for the logic network.
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Data: Logic network N
foreachGate n in N do

set f ← N .gateFunction(n);
if isAssociative(f) then

set G ← growGroup(n, f );
set n′ ← treeBalance(G);
N .substituteNode(n,n′);
Algorithm 2: Generic balancing algorithm

2.3.2 Rewriting. The so-called DAG-aware logic rewriting algo-
rithm [11] is an efficientmethod of replacing parts of a logic network
by different, but equivalent, logic structures. Based on cut enumer-
ation, the algorithm partitions the subject graph into small subnet-
works, typically ranging from 4 to 8 inputs. For each subnetwork,
the rewriting procedure attempts to find a better representation,
thus performing a local optimization. This optimization is com-
monly implemented in one of two ways: (i) optimization networks
are drawn from a precomputed database of optimal structures, or
(ii) replacement structures are computed at runtime using an exact
synthesis [12]. Our generic methodology naturally supports both
approaches. As illustrated in Algorithm 3, for each subnetwork, the
algorithm computes the gain of replacing the existing structure
with potential replacement structures. This is done in a DAG-aware
way, as described in Section 2.2.3, where reference counters are re-
cursively incremented and decremented using the functions ref and
deref, respectively. Thus, the algorithm obtains global optimizations
by locally rewriting the network.

Data: Logic network N
enumerateCuts(N );
foreachGate n in N do

foreach cut C of n do
set v ← deref(n);
set f ← computeTruthTable(C);
set n′ ← synthesize(f );
set v ′ ← ref(n′);
if v ′ < v ′ then

N .substituteNode(n,n′);
else

deref(n′);
ref(n);

Algorithm 3: Generic rewriting algorithm

There is not one CNF encoding that works best for all com-
binations of logic representations and SAT solvers. Hence, it is
sometimes necessary to construct specialized encodings for certain
representations. Fortunately, as described above, our method lends
itself to such specializations. Indeed, we use different encodings
to rewrite AIG and XAG networks, but this is completely trans-
parent to users of the rewriting flow. Using the same optimization
script, our method automatically generates the appropriate CNF,
depending on what logic representation is used.

2.3.3 Refactoring. Refactoring is a technique which resynthesizes
large parts of the network without aiming to reuse existing logic in
the network. Since it collapses a rather large part of the network

into a Boolean function and then resynthesizes it from scratch, it is
a powerful technique to overcome structural bias.

Data: Logic network N , fanin limit l , cost function cost
foreachGate n in N do

setM ← computeMFFC(n, l);
set f ← computeTruthTable(M);
setM ′,n′ ← synthesize(f );
if cost(M ′) < cost(M) then

N .substituteNode(n,n′);
Algorithm 4: Generic refactoring algorithm

Algorithm 4 illustrates the generic procedure. For each node in
the network, refactoring computes the node’s fanout-free cone with
a restricted fanin such that its truth table or a two-level represen-
tation, e.g., sum-of-products, can be efficiently computed. Based
on this function, a new network structure is computed that uses
the gates from the targeted logic network data structure. Various
synthesis methods can be used for this purpose (see, e.g., [14, 15]).
The new network structure is compared to the fanout-free cone
with respect to a given cost function, e.g., size. If the new network
structure is less expensive with respect to the cost function, the
fanout-free cone can be removed and replaced by the new data
structure. Note that fanout-free cone has by construction no exter-
nal fanout, except for the root node. Moreover, some of the required
network API is hidden behind functions such as simulate.

Refactoring is suitable for generic logic synthesis. Only two as-
pects require knowledge about the supported gates types: 1) simula-
tion of the fanout-free cone; 2) resynthesis of the collapsed function
into a new data structure. For the latter, containment relations
among the logic network types can be exploited. For example, a
synthesis algorithm that generates an AIG for a truth table, can
also be used inside refactoring for MIGs or XAGs.

2.3.4 Resubsitution. Boolean resubstitution is an optimizing trans-
formation that re-expresses the logic function of a node in a logic
network using nodes already existing in the network. Resubsti-
tution techniques are distinguished by the maximal number k of
operators added to a logic network to re-express a logic function.
A substitution of a candidate node is beneficial, if the number of
nodes freed after substitution is greater than k , such that particu-
larly roots of maximal fanout-free cones qualify as candidates for
Boolean resubstitution.

Algorithm 5 presents a generic resubstitution procedure. The
logic function of each node n in the logic network is computed
locally in a reconvergence-driven cut C with restricted fanin size
using exhaustive truth table simulation. Each node d , n in the
reconvergence-driven cut, which is not part of themaximum fanout-
free cone, is a divisor that potentially be used for resynthesis. The
core of k-resubstitution is a computational kernel, tryResubstitute
that selects up to k divisors D = {d1, . . . ,dk } and tests if n can be
resynthesized using them. On success, the new nodes required for
resynthesis (at most k) are generated, added to the logic network,
and the gain λ of resubstituting n is computed using DAG-aware
rewriting techniques. If λ > 0, n is substituted with the root n′ of
the new nodes.

Only the computational kernel of the Boolean resubstitution
technique depends on the underlying logic representation. For each
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Data: Logic network N , maximum number d of inserted nodes
foreachGate n in N do

set C ← findCut(N ,n);
setM ← computeMFFC(N ,n);
if |M | > 0 then

set D ← collectDivisors(N ,n);
computeTruthTables(C);
for k = 0 to d do

if n′ ← tryResubstitute(N ,n,k,D) then
set λ← computeGain(N ,n,n′);
if λ > 0 then

N .substituteNode(n,n′);
break;

Algorithm 5: Generic resubstitution algorithm

supported logic representation, the computational kernel has to
specialize three aspects that depend on the supported gate types:

(1) Divisor selection: The gate types (and their fanin sizes) sup-
ported by the logic representation define the selection of di-
visors. For instance, for 1-resubstitution in MIGs, consisting
of majority-of-three gates, three divisors have to be selected,
whereas in AIGs, consisting of AND nodes with fanin size 2,
only two divisors have to be selected.

(2) Resubstitution rules: For each topology composed of k gates,
a computational kernel has to be defined that compares the
logic function of the node to be substituted with the logic
function of the topology with the selected divisors and, on
success, triggers the substitution of the node.

(3) Filtering rules: A Boolean filter is a sufficient condition used
to rule out divisors that cannot be resubstituted. Several
Boolean filters have been discovered for different gate types [16,
17]. They are reported to significantly improve the perfor-
mance and scalability of Boolean resubstitution techniques.

3 EXPERIMENTAL RESULTS
In this section, we present a generic resynthesis flow implemented
using the EPFL logic synthesis libraries2 [18]. We evaluate the flow
in area optimization for LUT-mapping showing that different graph
representations (AIGs, MIGs, and XAGs) can be used to represent
logic networks. As benchmarks, we use the EPFL combinational
benchmarks suite3, which are initially provided as AIGs. All exper-
iments have been carried out on a MacBook Pro 12.1 with an 2.7
GHz Intel Core i5 processor and 8 GB of main memory.

3.1 Generic Resynthesis Flow
We create a generic logic resynthesis flow, based on the standard
non-depth-preserving area optimization flow compress2rs in
the logic synthesis package ABC [2]. The flow consists of the fol-
lowing sequence of optimizing transformations:

bz; rs -c 6; rw; rs -c 6 -d 2; rf; rs -c 8; bz;
rs -c 8 -d 2; rw; rs -c 10; rwz; rs -c 10 -d 2;
bz; rs -c 12; rfz; rs -c 12 -d 2; rwz; bz;

2EPFL logic synthesis libraries, https://github.com/lsils/lstools-showcase
3EPFL combinational benchmark suite, https://github.com/lsils/benchmarks

Table 1: Apple-to-apple comparison with ABC.

Flows Nd Lvl LUTs

Baseline (ABC) 1 1 1
Generic flow using AIGs +1.14% +3.02% +0.65%

where b, rs, rw, and rf refer to balancing, resubstitution, rewrit-
ing, and refactoring, respectively. The additional suffix z is ap-
pended to denote a zero-gain transformations, which not neces-
sarily reduces the size of a logic network but uses resynthesis to
restructure the benchmark and thus enable other optimization ca-
pabilities for following transformations. The parameters -c and -d
for rs denote the maximum size of a cut and the maximum number
of gates inserted by resubstitution.

Comparing with ABC. We first compare in an apple-to-apple
experiment the generic resynthesis flow using AIGs as logic net-
work representation with the state-of-the-art logic synthesis pack-
age ABC to analyze the overhead of the generic flow to an approach
specifically designed for AIGs. The accumulated results for all EPFL
benchmarks are listed in Table 1. Our implementation of the generic
resynthesis flow achieves similar results when compared to ABC,
but requires in total 1.14% more nodes and 3.02% more levels. Note
that the area optimization flow does not focus on preserving the
depth of a logic representation during optimization. After LUT-
mapping, the generic flow requires less than 1% more 6-LUTs. Over-
all, we conclude that the implementation of the generic approach
is competitive to ABC.

Comparing different logic representations. In a second ex-
periment, we compare the number of 6-LUTs after area optimization
and LUT-mapping for FPGAs using the generic resynthesis flow
with three different logic representations (AIGs, MIGs, and XAGs).
As baseline, we use the EPFL benchmark suite in their AIG repre-
sentation. Table 2 lists the number of nodes (Nd), number of levels
(Lvl), the number of 6-LUTs (LUTs), as well as the required time
(Time) for the baseline and the optimizations using AIGs, MIGs,
and XAGs as logic representations, respectively.

In total, we conclude that our flow is capable of optimizing
all three logic representations achieving comparable good results.
Logic resynthesis using AIGs achieves in 8 cases the best results
when compared to the other logic representation which leads to a
total improvement of 30.04% in LUTs. MIGs are particularly good
for the representation of arithmetic-intensive circuits and outper-
form the other data structures for the benchmarks multiplier
and sqrt. In total, MIG optimizations achieve an improvement
of 27.78%. Representing the logic networks as XAGs leads in 10
cases to the best results and in total to an improvement of 31.39%.
In general, we advocate a portfolio approach which achieves a total
improvement of 32.01%.

4 CONCLUSION
In this paper, we propose a generic representation-independent
resynthesis methodology for multi-level logic synthesis, using an
abstract concept definition of a logic network. Using this method
we show, for the first time, a complete design flow for AIGs, MIGs,
and XAGs that is competitive with the state of the art. Moreover, it
allows us to compare resynthesis techniques using different logic
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Table 2: Optimization results for the EPFL benchmark suits using different logic representations.

Benchmark I/O Baseline AIGs MIGs XAGs

Nd Lvl LUTs Nd Lvl LUTs Time Nd Lvl LUTs Time Nd Lvl LUTs Time

adder 256 / 129 1020 255 192 894 255 192 0.88 511 130 192 0.75 766 255 192 0.72
arbiter 256 / 129 11839 87 2595 11839 88 2594 35.16 6719 47 3112 15.31 11839 88 2594 16.79
bar 135 / 128 3336 12 512 2952 13 512 14.73 2939 14 512 6.49 2952 13 512 3.39
cavlc 10 / 11 693 16 119 662 18 122 17.37 558 14 165 16.49 668 18 124 1.06
ctrl 7 / 26 174 10 28 94 9 29 0.77 83 11 29 3.91 118 8 28 0.19
dec 8 / 256 304 3 273 304 3 273 0.56 304 3 273 1.16 304 3 273 0.56
div 128 / 128 57247 4372 23955 40782 4500 8182 130.75 33006 4303 8289 132.90 32696 4363 8212 45.12
i2c 147 / 142 1342 20 341 1167 17 319 4.77 1053 14 350 3.08 1197 16 321 1.05
int2float 11 / 7 260 16 47 212 17 48 2.46 191 11 58 1.37 209 18 48 0.23
log2 32 / 32 32060 444 8124 29509 398 8008 188.70 27300 372 8179 298.38 24305 332 7828 49.42
max 512 / 130 2865 287 744 2780 355 703 7.29 2212 133 734 4.06 2787 369 699 3.40
mem_ctrl 1204 / 1231 46836 114 11754 44846 126 11458 215.11 39338 118 13050 133.80 45480 134 11673 46.35
multiplier 128 / 128 27062 274 6578 24497 271 6342 75.00 22847 260 5579 64.16 18764 288 5723 21.80
priority 128 / 8 978 250 266 720 240 245 3.13 482 124 257 0.93 815 239 250 0.88
router 60 / 30 257 54 54 244 40 68 0.80 208 28 61 0.49 205 37 60 0.27
sin 24 / 25 5416 225 1584 5089 196 1593 33.56 4649 179 1624 45.22 4307 171 1515 9.33
sqrt 128 / 64 24618 5058 8204 18450 6100 4121 72.23 16039 7617 4030 35.45 14422 5996 4039 27.50
square 64 / 128 18484 250 4130 16566 249 4053 32.25 14799 137 4183 30.86 14061 279 3937 14.42
voter 1001 / 1 13758 70 2979 8586 70 1841 35.97 5082 68 1664 18.01 6814 51 1701 12.94

Total 871.49 821.82 255.42
Improvement 0.00% +30.04% +27.78% +31.39%

representations, and to show that various logic synthesis algo-
rithms work across representations. With the introduction of new
representation forms, our method allows users to quickly develop
completely novel design flows, by implementing a lightweight in-
terface. Finally, our method enables users of various technology
types to choose an optimization flow based on the logic represen-
tation most suitable to them. For instance, users that work in the
domain of nano-emerging technologies can use our tool to develop
a complete majority-logic design flow.

The generic method presented in this paper opens the door to
some interesting directions for future work. Currently, we use one
logic representation across the entire design flow. However, it may
be advantageous to dynamically switch between representations
during the flow, as some representations may lend themselves more
naturally to certain optimization steps. Another interesting path
is the development of a portfolio logic synthesis method. Often,
we do not know a priori which representation is best in a given
domain. Our method allows one to run the same design flow with
all representations and pick the best result. Finally, at the moment
we use the same generic design flow with all representations. How-
ever, it may be that a certain combination of flow × representation
unlocks very good optimizations in some specialized domain. Our
method enables users to prototype and experiment with generic
scripts which can be rewritten into more specialized design flows.
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