
Size Optimization of MIGs with an Application to QCA and
STMG Technologies

Heinz Riener
1

Eleonora Testa
1

Luca Amaru
2

Mathias Soeken
1

Giovanni De Micheli
1

1
Integrated Systems Laboratory, EPFL, Lausanne, Switzerland

2
Synopsys Inc., Sunnyvale, CA, USA

ABSTRACT
Majority-inverter graphs (MIGs) are a logic representation with

remarkable algebraic and Boolean properties that enable efficient

logic optimizations beyond the capabilities of traditional logic repre-

sentations. Further, since many nano-emerging technologies, such

as quantum-dot cellular automata (QCA) or spin torque majority
gates (STMG), are inherently majority-based, MIGs serve as a natu-

ral logic representation to map into these technologies. So far, MIG

optimization methods predominantly target to reduce the depth of

the logic networks, corresponding to low delay implementations

in the respective technologies. In this paper, we introduce several

methods to optimize the size of MIGs. They can be applied such that

the depth of the logic network is preserved; therefore our methods

have a direct effect on the physical area, without worsening the

delay. Some methods are inspired by existing size optimization

algorithms for non-majority-based logic networks, others make

explicit use of the majority function and its properties. All methods

are Boolean—in contrast to algebraic optimization methods—which

has a positive effect on the quality but challenges their implemen-

tation. Our experiments show that using our methods the size of

MIGs in the EPFL combinational benchmark suite can be reduced

by up to 7.12%. When mapped to QCA and STMG technologies we

reduce the average area-delay-energy product by 2.31% and 2.07%,

respectively.

ACM Reference Format:
Heinz Riener

1
Eleonora Testa

1
Luca Amaru

2
Mathias Soeken

1
Gio-

vanni De Micheli
1
. 2018. Size Optimization of MIGs with an Application to

QCA and STMG Technologies. In NANOARCH ’18: IEEE/ACM International
Symposium on Nanoscale Architectures, July 17–19, 2018, Athens, Greece.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3232195.3232202

1 INTRODUCTION
Many of today’s nano-emerging technologies, including spin-wave

devices [8], quantum-dot cellular automata (QCA, [10]), and spin

torque majority gates (STMG, [13]), are inherently majority-based.

As an example, the computation principle of spin-wave devices

is based on the interference of propagating spin waves and the

information is encoded in the phase of the waves. Being majority-

based, these technologies offer a particular inexpensive realization

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

NANOARCH ’18, July 17–19, 2018, Athens, Greece
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-5815-6/18/07. . . $15.00

https://doi.org/10.1145/3232195.3232202

of the majority operation. For example, in the QCA technology

the area requirements for the majority-of-three operation are more

than 2× smaller compared to the ones of an inverter.

The recent progress in nano-emerging technologies have sparked

a considerable interest in majority-based logic synthesis. In contrast

to conventional logic synthesis algorithms—being based on logic

primitives such as ‘AND’ or ‘OR’—majority-based algorithms em-

ploy intermediate data-structures capable of natively representing

and manipulating majority operations. In particular, competitive

solutions for majority-based delay optimization (see, e.g., [1]) and

inversion minimization (see, e.g., [18]) have been proposed.

In this paper, we concentrate onmajority-based size optimization.

We introduce size optimization algorithms for majority-inverter

graphs (MIGs), a logic network representation inwhich the only two

primitives are a majority-of-three gate and an inverter. We focus on

node replacement techniques that re-express the global function of

an existing majority node using other nodes already present in the

logic network. Nodes which are no longer used (including nodes

in their transitive fan-ins) can then be removed. The objective is

to reduce the size of the logic representation as much as possible

while maintaining the global input-output functionality of the logic

network (and preserving the logic network’s depth).

We introduce Boolean resubstitution for MIGs, an effective opti-

mization technique in conventional logic optimization flows, which

serves two purposes: (1) it achieves size reductions when other tech-

niques saturate and (2) helps to escape local minima in the logic

optimization flow and thus re-enables other size optimizations. We

show that finding a resubstitution for a single node in an MIG—

although requiring in the worst-case cubic time in the number of

majority nodes (instead of quadratic time for two-input nodes in

conventional logic representations)—can be done efficiently inMIGs

by leveraging a novel filtering approach that sorts out infeasible

resubstitution candidates as early as possible.

Moreover, we introduce relevance optimization, a novel node

replacement technique that makes use of the majority operation’s

functional properties and thus exploits optimization capabilities not

easily recognizable in conventional logic representations. We show

experimentally that in practice relevance optimization achieves

results competitive to general Boolean resubstitution such that

logic optimization flows for MIGs benefit from both.

All presented size optimizations can be integrated with existing

large-scale logic optimization frameworks. We present a proof-of-

concept implementation using windowing in combination with

truth tables. Experimental results using the EPFL benchmark suite

confirm the effectiveness of the novel optimization techniques. We

show that a single optimization pass can reduce the size of an al-

ready depth-optimized as well as already size-optimized MIG by

https://doi.org/10.1145/3232195.3232202
https://doi.org/10.1145/3232195.3232202

NANOARCH ’18, July 17–19, 2018, Athens, Greece

∧∧

∨

∨

∧

∧

∨

∧

∧

∨

∧

∧

x1 x3x2 x5x3

prime
5
(x1, . . . , x5)

(a)

∧

M

M

∧ ∧

M

M

x1x3 x2 x5x4

prime
5
(x1, . . . , x5)

(b)

Figure 1: Example of an (a) AOIG representation and
(b) MIG representation for function prime

5
(x1, . . . ,x5) =

[(x5 . . . x1)2 is prime]. Majority-3, ‘AND’, and ‘OR’ nodes are
distinguished by M , ∧, and ∨, respectively. Complemented
edges are drawn using a dashed line.

up to 7.12% and 2.83% (without increasing its depth
1
), respectively.

As baseline, we compare to the best-known state-of-the-art algo-

rithms for MIG depth and MIG size optimization. The resulting

improvements are within the expected range of 3% average reduc-

tion ratio reported for Boolean resubstitution in conventional logic

optimization flows [11] and enable depth- and size-oriented logic

optimization flows for MIGs that achieve an average depth reduc-

tion of up to 44.17% and an average size reduction of up to 18.13%,

respectively.

Almost none of the previous majority-based logic optimization

algorithms show the actual gain in area and delay after mapping the

logic networks to the corresponding technologies. We demonstrate

the effect of the proposed techniques both to the logic minimization

of MIGs and to area minimization when mapped to QCA and STMG

technologies. The experimental results confirm the effectiveness

of our approach. The size of MIGs can be improved by up to 7.12%

compared to the state-of-the-art MIG size optimization algorithms.

When being mapped to QCA and STMG, the optimized logic net-

works lead to an improvement in the average area-delay-energy

(ADE) product by 2.31% and 2.07%, respectively, compared to the

state-of-the-art mapping algorithm.

2 BACKGROUND
2.1 Majority-Inverter Graphs
Majority-inverter graphs (MIGs, [1]) are homogeneous logic net-

works. A MIG is a directed acyclic graph, where internal nodes

represent 3-input majority operations connected via edges that can

be complemented to represent inverters. Each node implements the

majority function of its three children x , y, and z, denoted as ⟨xyz⟩,
which evaluates to true if and only if at least two of the three inputs

are true [15]. MIGs are universal representation forms, which can

be employed to efficiently represent any Boolean function. Tradi-

tional AND-OR-inverter graphs (AOIGs) are a special case of MIGs,

since ⟨0xy⟩ = x ∧ y and ⟨1xy⟩ = x ∨ y. It follows that MIGs can

be easily derived from AOIGs by node-wise replacement of the

‘AND’ and ‘OR’ operators by majority-3 operators with a constant

input. Fig. 1 shows both the AOIG and the MIG for the function

prime
5
(x1, . . . ,x5) = [(x5 . . . x1)2 is prime]. Note that the ‘AND’

1
In fact, the depth is further reduced.

gates in the MIG can be considered as majority nodes where one of

its inputs points to constant 0. The example illustrates that MIGs

allow for a more compact representation due to the expressiveness

of the majority operator. This positively influences the mapping

into majority-based technologies.

2.2 MIG Optimization Techniques
Besides representing Boolean functions, MIGs allow remarkable

logic optimizations. Optimization methods can be classified as al-

gebraic or Boolean and typically aim for either reducing the depth

(number of levels) or the size (number of nodes) of an MIG.

Algebraic optimization methods use a sequence of transforma-

tion rules to transform an MIG into an optimized version. For this

purpose, anMIG Boolean algebra together with its axiomatic system

are introduced in [1]. The axiomatic system consists of five prim-

itive axioms (identity, commutativity, distributivity, associativity,

and complement) and forms a sound and complete axiomatization

of MIG manipulation. As a consequence, given an MIG, all possi-

ble functionally equivalent MIG representations can be reached

by applying sequences of these axioms. Moroever, three derived

rules (relevance, complementary associativity, and substitution) are

introduced in [1]. In the context of this paper, only the complement

axiom and the relevance rule are important which we introduce

as the following transformation rules: (1) The self-duality of the

majority operation enables inverter propagation described by the

inverter propagation rule ⟨xyz⟩ = ⟨x̄ȳz̄⟩, which allows to move

inverters from inputs to outputs, and vice versa. (2) The relevance

rule ⟨xyz⟩ = ⟨xyzx/ȳ ⟩ allows to replace reconvergent variables

with their neighbors, i.e., each occurrence of x in z is replaced by ȳ
denoted by zx/ȳ .

Boolean optimization methods, in contrast to algebraic methods,

leverage each node’s (Boolean) function (and possibly additional

don’t care information) to improve an MIG representation. In gen-

eral, Boolean optimization methods are often more precise than

algebraic methods and achieve better results, but they are also

computationally more costly. One remarkable Boolean method par-

ticularly designed for MIGs was proposed in [2]: advantageous

orthogonal bit-errors are seeded into the MIG which are automati-

cally corrected leveraging the error correction capabilities of the

majority operation.

A logic optimization flow, that employs algebraic and Boolean

methods, for MIG depth reduction has been presented in [2].

Work on size reduction of MIGs is more sparse. Recently, an

exact synthesis method based on functional hashing has been pre-

sented [16]. The idea is to rewrite the MIG by replacing all 4-input

subgraphs with their minimal-size exact representation. In [16],

the search space for 4-input Boolean functions has been reduced

by making use of Boolean function classification. Overall, these

techniques produce large improvements, but suffer from scalability

issues when all Boolean functions with more than 4 inputs have to

be precomputed. In [7], the use of exact synthesis for logic rewriting

is further improved by computing the exact subgraph only for those

functions that appear in practice. This has been achieved by using

lookup-table-based mapping techniques (LUT mapping, [14]). In

addition to the mentioned optmization methods, other algorithms

have been presented. In [9], the network is decomposed into 3-input

subgraphs; all 3-input subgraphs are then replaced by their minimal

majority expression. Further, node redundancies are removed by

Size Optimization of MIGs with an Application to QCA and STMG Technologies NANOARCH ’18, July 17–19, 2018, Athens, Greece

Input:MIGM , cut-size limit l , node limit s
Output: Optimized MIGM

1 foreach node p inM in topological order do
2 C = ComputeCut(M, {p}, l);

3 W = ExpandToWindow(M,C, s);

4 Ŵ = OptimizationProcedure(W ,p);

5 M = M[W ← Ŵ];

Algorithm 1:Windowed MIG Optimization

keeping only one of the nodes implementing the same function.

The method has been extended to work with all 4-input subgraphs

in [20]. A size optimization node merging approach, which removes

node redundancies in MIGs, has been presented in [6].

Besides size and depth, other metrics can be optimized. As an

example, inversion optimization plays a key role for applications

that concern emerging technologies. Some of the most promising

nano-technologies face inversion limitations and hence benefit from

inversion minimization: (i) some of them do not have an efficient

way to implement inversion (see, e.g., QCA [10]); (ii) some others

do not have the possibility to build inversions (see, e.g., STMG [12]).

In [18], a method to optimize the number of MIG inversions accord-

ing to the target technology is presented. This method exploits the

inverter propagation rule to minimize complemented edges. The

same property is used in [19] to remove inversions in the network

by moving them on primary inputs.

3 SIZE OPTIMIZATION
In this paper, we revise functional reduction and introduce two

new size optimization methods for MIGs: (i) Boolean resubstitu-

tion and (ii) relevance optimization. The first method is inspired

by existing size optimization algorithms for non-majority-based

logic networks; the second method leverages the properties of the

majority function. Both methods are Boolean and make use of

functional information computed for each node in the logic net-

work. The basis for all optimization methods is the scalable logic

synthesis framework described by Mishchenko and Brayton [11]:

a small window (with restricted fan-in and unlimited fan-out) is

moved over the logic network. The Boolean function of each node

within the window is computed using exhaustive simulation. The

approach is fast (Boolean functions are represented as truth tables),

scales well, and often outperforms computation based on binary

decision diagrams [4] or Boolean satisfiability, when windows up

to 16 inputs are considered.

3.1 Windowing
Windowing is an approach to limit the scope of an optimization

procedure to a small fraction of a logic network that allows in many

cases to drastically improve the scalability. The pseudocode of the

windowing procedure is shown as Algorithm 1. The procedure

takes as input an MIGM and two positive integers l and s , where
l denotes the maximal number of primary inputs (cut-size limit)

of the window and s denotes the maximal number of nodes (node

limit) of the window. As result, the procedure returns the MIGM
optimized for size.

In a loop, the procedure iterates over all nodes p of M in topo-

logical order and generates for each of the nodes a reconvergence-

driven cut C starting from p with at most l nodes (see [11] for a

1 ComputeTruthTable(W);

2 foreach node u inW in topological order do
3 foreach node v inW \{u} in topological order do
4 if v ∈ TransitiveFanout(u) then continue;
5 if u = v then
6 Merge(W ,u,v);

7 else if u = v̄ then
8 Merge(W ,u, v̄);

Algorithm 2: Functional Reduction

detailed description of the cut computation). The cut C serves as

the input boundary of the windowW . Starting from the nodes in

C , the windowW is iteratively extended by merging parent nodes

if all their children are already inW . The procedure terminates if

no new parents can be merged or the number of window nodes

exceeds s . The obtained windowW is then locally optimized to Ŵ
using an optimization procedure. Finally, the windowW in M is

replaced by the optimized window Ŵ .

3.2 Functional Reduction
Functional reduction (FR) [5, 6, 9] is an approach that identifies

and merges functionally equivalent nodes in a logic network such

that after its application no two nodes in the functionally reduced

network represent the same logic function. In this section, we revise

the basic functional reduction approach of [9] and present a scal-

able variant utilizing the windowing procedure from the previous

section. The pseudocode is shown in Algorithm 2.

Functional reduction is applied to a windowW . In an iterative

process, each node u ∈W is checked for functionally equivalence

with each node v ∈W not in the transitive fan-out of u. If u and

v (u and v̄) represent the same logic function, i.e., u = v (u = v̄),
then u and v (v̄) are merged inW , such that the larger logic cone is

replaced by the smaller logic cone and the overall size is reduced.

3.3 Boolean Resubstitution
Boolean resubstitution (RS) expresses the logic function of a node

using other nodes already present in the logic network. Resub-

stitution techniques are distinguished by the number k of logic

operators additionally added to the logic network when substitut-

ing a logic function, i.e., 0-resubstitution expresses a logic function

by one other logic function without adding a new logic operator;

1-resubstitution expresses a logic function by adding one logic

operator, and so forth.

A resubstitution of a candidate node p with the logic function f
is considered beneficial if the number of nodes of W decreases

after substitution, i.e., if Gain(p, f) ≥ 1 which corresponds to the

number of majority operators freed. We consider 0-resubstitution

and 1-resubstitution only:

1 ComputeTruthTable(W);

2 if TryResubstitution0(W ,p) then return;
3 if TryResubstitution1(W ,p) then return;
4 [...]

The 0-resubstitution algorithm is an asymmetric variant of func-

tional reduction. Its pseudocode is identical to Algorithm 2, but

NANOARCH ’18, July 17–19, 2018, Athens, Greece

1 foreach node x ∈W \{p} in topological order do
2 if x ∈ TransitiveFanout(p) then continue;
3 foreach node y ∈W \{p,x} in top. order do
4 if y ∈ TransitiveFanout(p) then continue;
5 if p , ⟨xyp⟩ then continue;
6 foreach node z ∈W \{p,x ,y} in top. order do
7 if z ∈ TransitiveFanout(p) then continue;
8 if Gain(p, ⟨xyz⟩) < 1 then continue;
9 if p = ⟨xyz⟩ then

10 W =W [p ← ⟨xyz⟩];

11 return true;

12 else if p = ⟨x̄yz⟩ then
13 W =W [p ← ⟨x̄yz⟩];

14 return true;

15 return false;

Algorithm 3: TryResubstitution1

instead of iterating over all nodes u (line 2) the fixed candidate

node p is used.

The 1-resubstitution algorithm shown as Algorithm 3 searches

for nodes x , y, z to replace p using one majority operator. Note that

due to the inverter propagation rule (see Section 2.2) it suffices to

consider x̄ as the only negated child. To further speed up compu-

tation, we employ a Boolean filter derived from the majority law.

If x , y, then ⟨xyp⟩ = p has to hold, i.e., after selecting nodes for

x and y, one does not have to iterate over z whenever the filter

applies.

3.4 Relevance Optimization
In this section, we introduce relevance optimization (RO), a novel

node replacement technique for MIGs that exploits the properties of

the majority function and thus cannot be employed when restricted

to gate libraries using only ‘NOT’ and ‘AND’ or ‘NOT’ and ‘OR’.

Theorem 1 (Replacement rule
2
). We have ⟨xyz⟩ = ⟨wyz⟩ if

and only if (x ⊕w)(y ⊕ z) = 0, or in other words y , z ⇒ w = x .

The replacement rule describes under which condition one op-

erand in a majority expression can be replaced by another one.

One can readily verify that the aforementioned relevance rule is a

special case of the replacement rule.

Corollary 1 (Relevance rule
2
). We have ⟨xyz⟩ = ⟨xy/z̄yz⟩,

where xy/z̄ is obtained by replacing all occurrences of y with z̄ in x .

The replacement rule can be used to formulate an optimization

procedure that replaces a child node x of a majority expression

m = ⟨xyz⟩ with another node w if (x ⊕ w)(y ⊕ z) = 0 holds and

x is not used by any other logic function in the network or as a

primary output. These additional structural conditions stem from

the fact that the replacement rule only enforces x = w if y , z.
Otherwise, if y = z, the result ofm is determined by the majority

law. However, in these cases, x , w may hold which would affect

other logic functions that use x . Further, to guarantee that the logic
network stays free of cycles, the node p cannot be chosen from the

transitive fan-out ofm.

2
The proof is presented in [17].

The replacement rule allows to reduce the complexity of a logic

network in two ways: (i) Ifw is replaced by x , then x is no longer

used in the logic network and can be removed. The size of the

logic network is reduced if and only if x is not a constant. (ii) If the

logic cone of w is smaller than x , the logic cone ofm is reduced.

Consequently, if multiple different nodesw satisfy the replacement

rule, the x with the smallest logic cone is preferred. To find good

candidate pairs x ,w fast, we iterate overw in topological order, but

overm in reverse topological order:

1 ComputeTruthTable(W);

2 foreach nodem = ⟨xyz⟩ inW in reverse top. order do
3 foreach nodew inW \{m} in topological order do
4 if |Fanout(x)| > 1 then continue;
5 if w ∈ TransitiveFanout(m) then continue;
6 if (x ⊕w)(y ⊕ z) = 0 then
7 W =W [x ← w];

8 return;
9 else if (x ⊕ w̄)(y ⊕ z) = 0 then

10 W =W [x ← w̄];

11 return;

4 EXPERIMENTAL RESULTS
We implemented the presented size optimization methods in C++

3

and evaluated them using the EPFL combinational benchmark

suite.
4
All experiments were conducted on an Intel(R) Xeon(R)

CPU E5-2690 v4 @ 2.60GHz. The windows were limited to at most

12 inputs and at most 200 nodes. We apply ABC [3] equivalence

checking to ensure the correct behavior of each benchmark.

4.1 MIG Size Reduction
We show the size improvement obtained by applying each of the

mentioned techniques individually, and we compare our results

over existing approaches from the state of the art for depth opti-

mization [1] and size optimization [7]. In the first case, we focus on

reducing the size without further increasing the depth. In the latter

case, we focus on reducing the size without any additional restric-

tions on the depth. The proposed optimization methods achieve

reductions in both cases.

Tables 1 and 2 show the results for all three optimization meth-

ods when applied individually to the benchmarks. The first column

names the benchmarks, the remaining columns are organized in

five blocks: the first block (Benchmark) lists the number of pri-

mary inputs and primary output as well as the size and depth for

the benchmarks. In the second block (Prev. flow), we present the

size and depth of the MIGs when optimized with the best-known

state-of-the-art approach. The other three blocks (FR, RS, RO) are
structured in the same way and present the size and depth after

an optimization method was applied as well as the time required

for optimizing the benchmark. In the last row of each table, the

mean size and depth reductions are summarized for all benchmarks.

The row total reduction shows the reductions of the benchmarks

3
Source code for the algorithms will be published with the publication of the paper.

4
http://lsi.epfl.ch/benchmarks

Size Optimization of MIGs with an Application to QCA and STMG Technologies NANOARCH ’18, July 17–19, 2018, Athens, Greece

achieved by the overall synthesis flows with respect to the unopti-

mized benchmarks. The row improvement shows the reductions
achieved by the new techniques with respect to the previous flow.

Starting from the depth-optimized MIGs, the three methods are

capable of reducing the size of the MIGs by 2.03%, 7.12%, and 4.80%,

respectively, without affecting the depth negatively. Contrarily, the

depth even reduced by 0.19%, 1.01%, and 0.19%, respectively. The

depth-preservation is achieved by keeping track of the depths of

the nodes during logic optimization and forbidding updates on the

logic network that lead to an increased depth.

Starting from the size-optimizedMIGs, the three methods further

reduced the size of theMIGs by 1.04%, 2.34%, and 2.83%, respectively.

The size optimization also had a positive effect on the depth—the

depth reduced by 2.59%, 4.97%, and 4.63%, respectively.

In these experiments, the optimization methods were applied

only once. We argue that the presented techniques are, as in conven-

tional logic synthesis, more powerful when applied several times

interleavedwith other optimization passes, e.g., rewriting, factoring,

or balancing, which are not yet available for MIGs.

Overall, the size optimization techniques are able to regain up

to 7.12% size while preserving a depth reduction of up to 44.17%.

Moreover, when focusing on the size-optimized MIGs, the novel rel-

evance optimization achieves a better size reduction than functional

reduction and resubstitution, which results in an overall reduction

of up to 18.13% of nodes and up to 4.63% of levels of the MIGs.

4.2 Area-Delay-Energy Product Reduction for
QCA and STMG

We evaluate the efficiency of our size optimization by mapping the

logic networks into QCA and STMGs. We compare our results to

the state-of-the-art approach presented in [20], which we reimple-

mented using FR from Section 3 and windowing to achieve larger

scalability and therefore address larger benchmarks. In our experi-

ments, we found that the results obtained with our implementation

of [20] outperform the more recently presented results in [6]; the

latter can also easily be validated by comparing the numbers for

size and depth in Table 2 from the previous section to [6, Table III]

for the common benchmarks (i2c, max, square, log2, multiplier).
Table 3 shows area, delay, energy, and the ADE product for each

of the benchmarks when mapped to QCA and STMG technologies,

respectively. Total reduction compares the results to the original

EPFL benchmarks, while the improvement is evaluated with respect

to [20]. In this case, since STMGs and QCA technologies have

limited possibilities for inverter implementation, we always applied

the algorithm presented in [19] in order to create inversion free

circuits. For size optimization we used the approach in [7] followed

by the FR, RO, and RS optimization techniques. To obtain area,

delay, and energy, we use the same specifications as in [19]. Our

optimization method is able to further reduce the ADE product by

2.31% for QCA and by 2.07% for STMGs. Overall, the MIG-based

synthesis flow is able to obtain an average improvement of 20.81%

and 55.63% for QCA and STMG, respectively.

5 CONCLUSIONS
Majority-based logic synthesis is a key enabler for majority-based

nano-emerging technologies. In this paper, we stocked up the reper-

toire of optimization techniques for MIGs with powerful size opti-

mization methods in order to exploit the full potential of MIGs for

majority-based nano-emerging technologies. Experimental results

for the proposed optimization methods confirmed the effectiveness

of our proposed optimization techniques. They show significant

size reductions when compared to the state-of-the-art depth and

size optimizations for MIGs. We also show the gain after mapping

the optimized logic networks to the technologies. Overall logic

minimization accounts for a total reduction of 20.81% and 55.63% of

the area-delay-energy products for STMG and QCA, respectively.

ACKNOWLEDGMENTS
This research was supported by H2020-ERC-2014-ADG 669354 Cy-

berCare and the Swiss National Science Foundation (200021-169084

MAJesty and 200021-146600).

REFERENCES
[1] Luca Gaetano Amarù, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli.

2014. Majority-Inverter Graph: A Novel Data-Structure and Algorithms for

Efficient Logic Optimization. In Design Automation Conference. 194:1–194:6.
[2] Luca Gaetano Amarù, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli.

2016. Majority-Inverter Graph: A New Paradigm for Logic Optimization. IEEE
Trans. on CAD of Integrated Circuits and Systems 35, 5 (2016), 806–819.

[3] Robert K. Brayton and Alan Mishchenko. 2010. ABC: An Academic Industrial-

Strength Verification Tool. In Computer Aided Verification. 24–40.
[4] Randal E. Bryant. 1986. Graph-based algorithms for Boolean function manipula-

tion. IEEE Trans. on Computers 35, 8 (1986), 677–691.
[5] Yung-Chih Chen and Chun-Yao Wang. 2009. Fast detection of node mergers

using logic implications. In 2009 International Conference on Computer-Aided
Design, ICCAD 2009, San Jose, CA, USA, November 2-5, 2009. 785–788.

[6] Chun-Che Chung, Yung-Chih Chen, Chun-Yao Wang, and Chia-Cheng Wu. 2017.

Majority logic circuits optimisation by node merging. In Asia and South Pacific
Design Automation Conference. 714–719.

[7] Winston Haaswijk, Mathias Soeken, Luca Gaetano Amarù, Pierre-Emmanuel

Gaillardon, and Giovanni De Micheli. 2017. A novel basis for logic optimization.

In Asia and South Pacific Design Automation Conference. 151–156.
[8] Alexander Khitun and Kang L. Wang. 2011. Non-volatile magnonic logic circuits

engineering. Journal of Applied Physics 110, 034306 (2011).
[9] KunKong, Yun Shang, and Ruqian Lu. 2010. An optimizedmajority logic synthesis

methodology for quantum-dot cellular automata. IEEE Trans. on Nanotechnology
9, 2 (2010), 170–183.

[10] Craig S. Lent, P. Doublas Tougaw, Wolfgang Porod, and Gary H. Bernstein. 1993.

Quantum cellular automata. Nanotechnology 4, 1 (1993), 49–57.

[11] Alan Mishchenko and Robert K. Brayton. 2006. Scalable logic synthesis using a

simple circuit structure. In Int’l Workshop on Logic and Synthesis. 15–22.
[12] Dmitri E. Nikonov, George I. Bourianoff, and Tahir Ghani. 2011. Nanomagnetic

circuits with spin torque majority gates. In Int’l Conf. on Nanotechnology. 1384–
1388.

[13] Dmitri E. Nikonov, George I. Bourianoff, and Tahir Ghani. 2011. Proposal of

a Spin Torque Majority Gate Logic. IEEE Electron Device Letters 32, 8 (2011),

1128–1130.

[14] Sayak Ray, Alan Mishchenko, Niklas Eén, Robert K. Brayton, Stephen Jang, and

Chao Chen. 2012. Mapping into LUT structures. In Design, Automation and Test
in Europe. 1579–1584.

[15] Tsutomu Sasao. 1999. Switching Theory for Logic Synthesis. Springer.
[16] Mathias Soeken, Luca Gaetano Amarù, Pierre-Emmanuel Gaillardon, and Gio-

vanni De Micheli. 2016. Optimizing Majority-Inverter Graphs with functional

hashing. In Design, Automation and Test in Europe. 1030–1035.
[17] Eleonora Testa, Mathias Soeken, Luca Amaru, Winston Haaswijk, and Gio-

vanni De Micheli. 2017. Mapping Monotone Boolean Functions Into Majority.

Submitted (2017).

[18] Eleonora Testa, Mathias Soeken, Odysseas Zografos, Luca Gaetano Amarù,

Praveen Raghavan, Rudy Lauwereins, Pierre-Emmanuel Gaillardon, and Gio-

vanni De Micheli. 2016. Inversion optimization in Majority-Inverter Graphs. In

Int’l Symp. on Nanoscale Architectures. 15–20.
[19] Eleonora Testa, Odysseas Zografos, Mathias Soeken, Adrien Vaysset, Mauricio

Manfrini, Rudy Lauwereins, and Giovanni De Micheli. 2017. Inverter Propagation

and Fan-Out Constraints for Beyond-CMOS Majority-Based Technologies. In

Annual Symp. on VLSI. 164–169.
[20] Peng Wang, Mohammed Y. Niamat, Srinivasa R. Vemuru, Mansoor Alam, and

Taylor Killian. 2015. Synthesis of majority/minority logic networks. IEEE Trans.
on Nanotechnology 14, 3 (2015), 473–483.

NANOARCH ’18, July 17–19, 2018, Athens, Greece

Table 1: Optimization Methods Applied to Depth Optimized Benchmarks
Benchmark Prev. flow [1] FR [6] RS RO

I/O Size Depth Size Depth Size Depth Time Size Depth Time Size Depth Time
[s] [s] [s]

dec 8 / 256 304 3 304 3 304 3 0.00 304 3 0.14 304 3 0.00

ctrl 7 / 26 174 10 180 6 176 6 0.03 169 6 0.09 160 6 0.05

bar 135 / 128 3336 12 3336 12 3336 12 2.07 3199 12 12.77 3336 12 3.27

cavlc 10 / 11 693 16 708 11 701 11 0.20 695 11 0.56 680 11 0.24

int2float 11 / 7 260 16 260 8 260 8 0.06 255 8 0.17 244 8 0.06

i2c 147 / 142 1342 20 1457 9 1454 9 0.37 1423 9 1.24 1420 9 0.49

router 60 / 30 257 54 365 26 362 26 0.16 349 26 1.22 363 26 0.21

voter 1001 / 1 13758 70 14075 60 12838 58 63.48 11157 58 224.40 12670 57 66.82

arbiter 256 / 129 11839 87 11523 77 11523 77 13.22 11523 77 30.44 11523 77 14.67

mem_ctrl 1204 / 1231 46836 114 52103 79 51816 79 361.77 49889 77 1818.65 51524 80 484.01

sin 24 / 25 5416 225 6679 112 6523 111 9.08 6138 108 64.08 6409 112 13.28

square 64 / 128 18484 250 21927 39 21548 39 79.12 19253 38 579.54 21081 39 124.04

priority 128 / 8 978 250 1148 126 1148 126 0.65 1050 126 7.10 951 126 1.10

adder 256 / 129 1020 255 1859 18 1760 18 1.05 1666 18 4.68 1825 18 0.98

multiplier 128 / 128 27062 274 33355 113 32952 112 178.21 31425 106 1670.05 30790 113 563.70

max 512 / 130 2865 287 4754 48 4666 48 5.48 4658 48 17.69 4677 48 6.38

log2 32 / 32 32060 444 36936 262 36406 262 209.01 34233 223 1660.81 35843 262 324.71

sqrt 128 / 64 24618 5058 32138 3430 31808 3447 137.56 30429 3430 611.02 31842 3430 154.10

total reduction -19.09% +43.16% -17.06% +43.35% -11.97% +44.17% -14.28% +43.35%

improvement 0.00% 0.00% +2.03% +0.19% +7.12% +1.01% +4.80% +0.19%

Table 2: Optimization Methods Applied to Size Optimized Benchmarks
Benchmark Prev. flow [7] FR [6] RS RO

I/O Size Depth Size Depth Size Depth Time Size Depth Time Size Depth Time
[s] [s] [s]

ctrl 7 / 26 174 10 139 10 139 10 0.01 128 9 0.06 135 9 0.02

router 60 / 30 257 54 220 54 217 54 0.08 215 54 1.05 211 54 0.11

int2float 11 / 7 260 16 263 18 261 16 0.04 256 16 0.46 254 16 0.06

dec 8 / 256 304 3 328 4 328 4 0.00 328 4 0.26 328 4 0.01

cavlc 10 / 11 693 16 757 19 744 19 0.29 725 19 2.43 724 19 0.41

priority 128 / 8 978 250 993 245 993 245 2.15 978 239 9.95 807 125 0.92

adder 256 / 129 1020 255 386 129 386 129 0.08 385 129 1.29 386 129 0.07

i2c 147 / 142 1342 20 1329 23 1310 23 0.42 1298 23 2.78 1287 23 0.64

max 512 / 130 2865 287 2491 290 2428 261 4.72 2469 280 18.52 2448 279 5.70

bar 135 / 128 3336 12 3110 14 3110 14 2.40 3110 13 14.76 3088 14 3.75

sin 24 / 25 5416 225 4496 167 4480 162 4.74 4465 158 36.31 4480 170 6.08

arbiter 256 / 129 11839 87 8957 63 8957 63 8.82 8957 63 45.41 8957 63 11.97

voter 1001 / 1 13758 70 7767 67 6649 59 31.90 5787 47 87.81 6537 61 45.10

square 64 / 128 18484 250 13671 156 13390 130 61.67 13194 128 109.84 13463 154 47.55

sqrt 128 / 64 24618 5058 21066 5989 21063 5989 102.62 20976 5942 624.11 21060 5988 109.43

multiplier 128 / 128 27062 274 19844 143 19824 143 72.16 19824 141 252.05 19804 143 122.00

log2 32 / 32 32060 444 25040 230 24999 230 89.96 24996 229 257.55 24977 230 109.43

mem_ctrl 1204 / 1231 46836 114 45034 144 44476 144 410.72 43305 136 1170.23 44118 143 600.50

total reduction +15.30% +5.59% +16.34% +8.18% +17.64% +10.56% +18.13% +10.22%

improvement 0.00% 0.00% +1.04% +2.59% +2.34% +4.97% +2.83% +4.63%

Table 3: Size Optimization Techniques (after QCA and STMG Technology Mapping)
Benchmark Baseline [20] QCA Opt. QCA Baseline [20] STMG Opt. STMG

Area Delay Energy ADE Area Delay Energy ADE Area Delay Energy ADE Area Delay Energy ADE
[µm

2
] [ns] [J] [µm

2
] [ns] [J] [µm

2
] [ns] [J] [µm

2
] [ns] [J]

adder 1.6 0.5 4.0E-18 3.5E-18 1.6 0.5 4.0E-18 3.5E-18 15.4 193.5 5.4E-11 1.6E-07 15.4 193.5 5.4E-11 1.6E-07

arbiter 12.8 0.3 3.1E-17 1.1E-16 12.8 0.3 3.1E-17 1.1E-16 35.2 94.5 5.9E-10 2.0E-06 35.2 94.5 5.9E-10 2.0E-06

bar 7.9 0.1 1.9E-17 1.1E-17 7.8 0.1 1.9E-17 1.0E-17 21.9 21.0 7.2E-10 3.3E-07 21.9 19.5 7.1E-10 3.0E-07

cavlc 1.4 0.1 3.3E-18 4.1E-19 1.3 0.1 3.2E-18 3.7E-19 4.0 28.5 1.3E-10 1.5E-08 3.8 28.5 1.2E-10 1.3E-08

ctrl 0.3 0.1 6.2E-19 8.6E-21 0.2 0.1 5.7E-19 6.6E-21 0.7 15.0 2.3E-11 2.4E-10 0.6 13.5 2.1E-11 1.8E-10

dec 0.4 0.0 1.1E-18 1.4E-20 0.4 0.0 1.1E-18 1.4E-20 1.2 6.0 2.8E-11 2.0E-10 1.2 6.0 2.8E-11 2.0E-10

i2c 2.6 0.1 6.5E-18 1.8E-18 2.5 0.1 6.1E-18 1.6E-18 6.9 34.5 2.1E-10 5.0E-08 6.6 34.5 2.0E-10 4.6E-08

int2float 0.5 0.1 1.2E-18 5.0E-20 0.5 0.1 1.2E-18 4.3E-20 1.4 24.0 4.8E-11 1.6E-09 1.3 24.0 4.4E-11 1.4E-09

log2 60.0 0.9 1.5E-16 8.2E-15 59.9 0.9 1.5E-16 8.2E-15 179.6 345.0 2.1E-09 1.3E-04 179.3 343.5 2.0E-09 1.2E-04

max 7.4 1.1 1.8E-17 1.4E-16 7.3 1.1 1.8E-17 1.4E-16 30.7 391.5 4.3E-10 5.2E-06 30.7 390.0 4.3E-10 5.1E-06

mem 92.4 0.6 2.3E-16 1.2E-14 86.3 0.6 2.1E-16 1.0E-14 265.2 216.0 6.5E-09 3.7E-04 247.0 204.0 6.0E-09 3.0E-04

mult 47.7 0.6 1.2E-16 3.3E-15 47.7 0.6 1.2E-16 3.2E-15 141.6 214.5 2.2E-09 6.6E-05 141.6 211.5 2.2E-09 6.5E-05

priority 2.6 1.0 6.5E-18 1.7E-17 2.6 1.0 6.3E-18 1.6E-17 7.7 367.5 1.8E-10 5.0E-07 7.7 358.5 1.7E-10 4.8E-07

router 0.7 0.2 1.8E-18 3.1E-19 0.7 0.2 1.8E-18 2.9E-19 3.6 81.0 4.2E-11 1.2E-08 3.6 81.0 4.1E-11 1.2E-08

sin 10.7 0.7 2.6E-17 1.9E-16 10.6 0.7 2.6E-17 1.8E-16 31.8 243.0 3.5E-10 2.7E-06 31.6 240.0 3.3E-10 2.5E-06

sqrt 51.0 24.0 1.3E-16 1.5E-13 50.8 23.8 1.2E-16 1.5E-13 151.6 8983.5 1.6E-09 2.2E-03 150.9 8911.5 1.6E-09 2.2E-03

square 32.0 0.5 7.8E-17 1.3E-15 31.0 0.5 7.6E-17 1.3E-15 95.1 195.0 1.6E-09 3.0E-05 92.3 193.5 1.6E-09 2.8E-05

voter 19.9 0.3 4.9E-17 2.4E-16 17.6 0.2 4.3E-17 1.6E-16 60.1 88.5 6.7E-10 3.6E-06 60.1 73.5 5.8E-10 2.6E-06

total reduction +18.50% +20.81% +53.56% +55.63%

improvement 0.00% +2.31% 0.00% +2.07%

	Abstract
	1 Introduction
	2 Background
	2.1 Majority-Inverter Graphs
	2.2 MIG Optimization Techniques

	3 Size Optimization
	3.1 Windowing
	3.2 Functional Reduction
	3.3 Boolean Resubstitution
	3.4 Relevance Optimization

	4 Experimental Results
	4.1 MIG Size Reduction
	4.2 Area-Delay-Energy Product Reduction for QCA and STMG

	5 Conclusions
	Acknowledgments
	References

