
CEGAR-based EF Synthesis of Boolean Functions
with an Application to Circuit Rectification

Heinz Riener∗
∗Institute of Space Systems,

German Aerospace Center, Germany
heinz.riener@dlr.de

Rüdiger Ehlers†‡
‡DFKI GmbH,

Bremen, Germany
rehlers@uni-bremen.de

Goerschwin Fey∗†
†Faculty of Mathematics and Computer Science,

University of Bremen, Germany
goerschwin.fey@dlr.de

This is the author-archived version of the paper. The original publication is available on IEEE XPlore under https://doi.org/10.1109/ASPDAC.2017.7858328.
c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract—The Exists-Forall (EF) synthesis problem deals
with finding parameters such that for all input assignments a
correctness specification is met. Many standard problems from
computer-aided design and verification can be formulated as an
instance of EF synthesis when a function template with holes —
parameters to be synthesized — is provided. In this paper, we
generalize the idea of EF synthesis in the context of Boolean logic
by allowing existential quantification over the domain of Boolean
functions (rather than Boolean variables) and present a bounded
synthesis approach guided by counterexamples to generate them
using techniques from Boolean learning. As an application, we
present circuit rectification as an EF synthesis problem and apply
the presented approach to incrementally synthesize patches for
digital circuits with multiple seeded faults.

I. INTRODUCTION

Motivation. Satisfiability (SAT) solving has many applica-
tions in computer science and artificial intelligence. The clas-
sical SAT problem asks, given a set of constraints encoded into
a logic formula over Boolean variables, whether a satisfying
assignment to the variables exists such that all constraints are
satisfied. SAT is the canonical NP-complete problem and was,
due to its practical importance, intensively studied in the last
fifty years. As a result, effective reasoning tools, called SAT
oracles or SAT solvers, are nowadays available. In practice, a
SAT oracle decides whether a Boolean formula is satisfiable
and, if so, provides a satisfying assignment as witness. Beyond
SAT, recently the problem of solving Quantified Boolean
Formulæ (QBF) with exactly one quantifier alternation —
the so-called Exists-Forall (EF) or 2QBF problem — is of
major interest. Instances of 2QBF arise, e.g., in the context of
parameter synthesis (or EF synthesis), where the existence of
parameters is checked such that for all possible input assign-
ments a correctness specification has to be met. Algorithms for
deciding 2QBF problems using two incremental SAT oracles
were proposed which outperform traditional approaches for
evaluating general quantified Boolean formulæ.

Problem. In the context of Boolean logic, the EF synthesis
problem asks, given a Boolean predicate Q(x, y) over Boolean
variables x and y, whether an assignment x̂ exists such that
for all possible assignments ŷ, the predicate Q(x̂, ŷ) holds. In
many practical applications, e.g., invariant generation or repair,
functions over parameters have to be found. A straight-forward
approach to synthesize functions is to enumerate abstract
function templates with holes — parameters to be synthesized

— and apply EF synthesis to “concretize” them. Blindly
enumerating function templates by size and testing them
against the specification, however, requires to solve many EF
synthesis problems and is typically too costly to find a solution
for practical problems in reasonable time. A smart enumeration
strategy that avoids the enumeration of functionally equivalent
expressions and learns from unsuccessful synthesis attempts is
desirable.

Solution. In this paper, we generalize the EF synthesis
problem by allowing existential quantification over the do-
main of Boolean functions (rather than Boolean variables)
and present a bounded synthesis approach guided by coun-
terexamples to generate them using techniques from Boolean
learning. In an iterative guess-and-check scheme, the approach
determines a concrete Boolean function in Disjunctive Normal
Form (DNF) bounded by the number of terms or concludes
that no such function exists. The approach is functional and
extends ideas from parameter synthesis, where some parame-
ters are iteratively determined in a CounterExample-Guided
Abstraction Refinement (CEGAR) loop to guarantee that a
given correctness specification is met. Instead of parameters, in
our approach, a Boolean function is synthesized assuming that
the function has a simple DNF representation with only a few
terms. As an application, we use the CEGAR-based bounded
synthesis approach to functionally rectify digital circuits with
multiple seeded faults when a single location at which the
circuit can be rectified is known and discuss how this approach
can be generalized by synthesizing Boolean functions with
multiple outputs.

Structure. The remainder of the paper is structured as
follows: in Section II, we discuss related work. Section III
is dedicated to the synthesis problem. We describe the EF
synthesis problem for Boolean functions and present an algo-
rithm for solving it using techniques from Boolean learning. In
Section IV, we describe how circuit rectification problems can
be solved by the proposed EF synthesis approach and present
in Section V experimental results for rectifying digital circuits
on the gate level with seeded faults. Section VI concludes.

II. RELATED WORK

Exists-forall synthesis and QBF. CounterExample-Guided
Inductive Synthesis (CEGIS) [1] was introduced to effectively
reduce ∃∀-queries to SAT in the context of program sketching.

The idea was generalized, e.g., in GhostQS [2] or RaReQS [3],
to (recursively) solve quantified Boolean formulæ with an
arbitrary number of quantifier alternations. EFSMT [4] solves
∃∀-queries modulo theories with applications in control theory
and parameter synthesis for cyber-physical-systems [5]. More
recently, incremental approaches for solving ∃∀∃-queries with
two quantifier alternations have been developed, e.g., for exact
diagnosis of digital circuits [6] or for synthesizing Byzantine-
resilient distributed systems [7].

Syntax-guided synthesis. Syntax-Guided Synthesis (Sy-
GuS) [8] arose in the context of program synthesis and
program optimization. The SyGuS problem asks for finding
an expression (modulo theories) that meets a semantic cor-
rectness specification and an additional syntactic requirement
that constrains the space of allowed implementations. SyGuS,
e.g., the refutation-based approach [9], allows to synthesize
functions modulo background theories. However, SyGuS is
not tweaked for the Boolean case and often either timeouts or
produces huge and suboptimal solutions.

Boolean learning. Boolean learning is a technique to syn-
thesize a Boolean function with a hidden, unknown structure
from a set of input-output samples. The problem can be re-
duced to SAT and was, e.g., in [10], solved using mathematical
programming. The description of Boolean learning in this
paper mainly follows the notation of Knuth [11]. However,
in contrast to Knuth, an incremental version of the problem
is considered, where input-output samples are systematically
added to refine the Boolean function.

Engineering change order and circuit rectification. Logic
rectification approaches can be broadly classified into three
categories: 1.) Dictionary-based approaches use an error
model for rectification [12]. They are typically fast, but limited
in their applicability to certain fault types. 2.) Structural
approaches [13], [14], [15], [16], match the differences of
the circuit and its specification to reduce the possible number
of rectifications and work only well if the circuit and the
specification share common substructures. 3.) Functional ap-
proaches, e.g., post-rectification [17], Boolean unification [18],
BDD-based synthesis [19], [20], counterexample-guided re-
synthesis [21], [22], apply synthesis techniques to rectify
the circuits. The functional approaches are not restricted to
any fault model or assumptions about the structure of the
circuit, but typically do not scale well with the circuit size.
We describe functional circuit rectification as an EF synthesis
problem. The overall idea is similar to counterexample-guided
re-synthesis, but the synthesis approach is orthogonal to the
problem-specific search techniques, e.g., presented in [21].

III. SYNTHESIS OF BOOLEAN FUNCTIONS

Let B := {0, 1}. Suppose that f : Bn → B is a Boolean
function over Boolean variables x := x1, . . . , xn with multiple
inputs and a single output and Q is a Boolean predicate (a
specification) that imposes constraints on f that have to be
met. The problem of synthesizing f is to find a concrete
expression f̂ in Boolean logic such that for all assignments

Guess:

f̂ |= ∃f.
∧

(x̂,r̂)∈D

{
f(x̂), r̂

¬f(x̂), ¬r̂

Check:

x̂ |= ∃x.¬Q(f̂(x), x)

Fail

Done

D := ∅

f̂

true

D := D ∪ {(x̂,¬f̂(x̂))}

false

false

1

2

Fig. 1. CEGAR-based synthesis of Boolean functions.

to x the predicate Q(f̂(x), x) holds. This problem can be
formalized as a query in second-order logic1 of the form

f̂ |= ∃f.∀x.Q(f(x), x), (1)

where a model f̂ for the Boolean function f has to be
constructed. Queries of such a form are beyond the capabilities
of classical SAT and QBF solvers. SAT solvers cannot deal
with quantifier alternations, whereas neither SAT nor QBF
solvers allow to quantify over Boolean functions.

Exists-forall synthesis for Boolean functions. Suppose
that the specification Q is provided, a CEGAR-based exist-
forall synthesis approach approximates the domain of the ∀-
quantified variables in Eq. 1 with a subset of selected sample
points. The sample points are iteratively generated using the
guess-and-check scheme shown in Fig. 1. In each iteration, a
Boolean function f̂ is guessed that is consistent with all sample
points in an initially empty database D. The function is then
checked against Q. If the check fails, a counterexample is
generated and added to D. The process terminates if either no
new Boolean function f̂ consistent with the sample points in
D can be guessed, which proves that no such function exists
(Fail), or if no counterexample exists that refutes f̂ , which
proves that the guessed function is a correct solution (Done).

Learning Boolean functions. We use techniques from
Boolean learning [10], [11] to guess a concrete candidate func-
tion f̂(x) over Boolean variables x := x1, . . . , xn consistent
with all sample points in the database D. The Boolean function
is represented as a DNF with a bounded number of terms.
Suppose that the number m of terms is fixed, we construct a
satisfiability problem over 2nm Boolean variables pj,l and qj,l
for 1 ≤ j ≤ m and 1 ≤ l ≤ n, to determine a concrete DNF
representation of the Boolean function, where

pj,l :=

{
1, xl in term j

0, otherwise
and qj,l :=

{
1, ¬xl in term j

0, otherwise.

The general form of all Boolean functions in m-DNF, i.e.,
bounded by the number m of terms, can be described as

F (x1, . . . , xn; p1,1 . . . , pm,n; q1,1 . . . , qm,n) ≡
m∨
j=1

n∧
l=1

(
ITE(pj,l, xl, true) ∧ ITE(qj,l,¬xl, true)

)
, (2)

1f is a second-order variable

where the expressions of form ITE(c, g, h) evaluate to g
if c = 1 and to h if c = 0, respectively. If con-
crete values p̂j,l and q̂j,l are assigned to all pj,l and qj,l,
then F (x1, . . . , xn; p̂1,1 . . . , p̂m,n; q̂1,1 . . . , q̂m,n) is a Boolean
function in m-DNF. Hence the conditions in the ITE-
expressions are evaluated such that the expressions degenerate
to Boolean variables. Note, also, that if p̂j,l and q̂j,l are both
true for some j, the corresponding j-th term cancels out.

Non-incremental concretization. Given a database D of
pairs (x̂, r̂) of concrete sample points x̂ := x̂1, . . . , x̂n and the
correct evaluation r̂ := f(x̂) of the function to be synthesized,
a satisfying assignment p̂ and q̂ to the Boolean variables p :=
p1,1, . . . , pm,n and q := q1,1, . . . , qm,n can be computed as a
solution of the query

p̂, q̂ |=
∧

(x̂,r̂)∈D

{
N (x̂, p, q), r̂ = 0

P(x̂, p, q), r̂ = 1
, (3)

with

N (x1, . . . , xn; p1,1, . . . , pm,n; q1,1, . . . , qm,n) :=(m∧
j=1

n∨
l=1

(ITE(xl, qj,l, pj,l))
)

and
P(x1, . . . , xn; p1,1, . . . , pm,n; q1,1, . . . , qm,n) :=

∃z1, . . . , zm.
(m∨
j=1

zj

)
∧

(m∧
j=1

n∧
l=1

(¬zj ∨ ¬ITE(xl, qj,l, pj,l))
)
.

using a SAT oracle.
When used in Eq. 2, the assignments p̂, q̂ concretize the

general m-DNF, such that f̂ is a m-DNF consistent with all
sample points in D. If Eq. 3 becomes unsatisfiable, then no
such m-DNF exists, which either means that m is too restricted
or no Boolean function at all exists.

Incremental concretization. Eq. 3 can be used to learn p̂
and q̂ from a given database D. In many scenarios, however
(e.g., CEGAR-based approaches), not a complete database
is initially provided, but the database iteratively improves
through refinements over time. In these cases, incremental
SAT oracles typically outperform non-incremental approaches
because they preserve and re-use learned conflict clauses from
previous SAT calls. If m is fixed, the previously discussed
approach to Boolean learning can be re-formulated in an
incremental fashion. Suppose that (x̂, r̂) is a newly provided
pair and I(p, q) is the current SAT instance with all constraints
from the previously learned sample points (and initially true),
then

p̂, q̂ |= I(p, q) ∧

{
N (x̂, p, q), r̂ = 0

P(x̂, p, q), r̂ = 1
, (4)

is an incremental formulation of Eq. 3. If m is increased,
however, the SAT instance has to be re-constructed from D
and the learned clauses are lost.

CEGAR-based bounded functional synthesis. The
CEGAR-based exists-forall synthesis approach for Boolean
functions combined with the Boolean learning scheme enables
a bounded synthesis approach for Boolean functions as shown
in Fig. 2. Given the Boolean predicate Q, a lower bound l
and an upper bound u for the number of terms, the synthesis
approach constructs a Boolean function in m-DNF represen-
tation, l ≤ m ≤ u, guided by counterexamples (or reports that
no such function exists). The synthesis approach iteratively
refines a candidate function. In each iteration, 1.) a Boolean
function in m-DNF is guessed (starting with m = l) and 2.)
checked against Q. If the check succeeds, Done is reported and
the guessed m-DNF is returned to the user. If the check fails,
the generated counterexamples shed light on why the DNF
does not meet the specification and 3.) is used to incrementally
refine the guess. If no new Boolean function can be guessed
and the upper bound u on the number of terms is reached,
i.e., if m > u evaluates to true, the process terminates with
Fail, or otherwise the number m of terms is increased. This
step is non-incremental, i.e., when the number of terms is
increased, in 4.) the satisfiability problem is re-constructed
from the whole database of sample points. Consequently, all
learned clauses of the SAT oracle are lost in this step. The
knowledge collected in the database D, however, is re-used
for the next guessed Boolean function.

Generalization to multi-output functions. Suppose that
f : Bn → Bs is a Boolean function to be synthesized
over Boolean variables x := x1, . . . , xn with s output bits.
The presented approach is still applicable with the major
difference that concrete sample points obtained as counterex-
amples cannot be easily classified as positives or negatives.
Instead, each counterexample can be seen as a lemma, which
states that a certain combination of the output bits is not
admissible for a concrete input assignment. One of the output
bits has to differ for the same input assignment in the next
iteration. Consequently, the approach explores and mines the
relationship between the individual output bits driven by coun-
terexamples until a Boolean function that meets the correctness
specification is found or the SAT solver is able to prove that
no such function exists within the given restrictions.

IV. CIRCUIT RECTIFICATION AS EF SYNTHESIS

Incremental synthesis of circuit patches. Suppose that C
is a faulty combinational circuit with correctness specifica-
tion S, e.g., provided as a reference circuit or a set of
logic constraints. Moreover, suppose that also a fixed single
location l in C is known at which the circuit can be rectified.
The location may be manually chosen by a designer or
automatically computed using techniques from automated fault
localization. We introduce a Boolean predicate Rectify(f, x)
that evaluates to true if C produces the same outputs as S
on input x when the circuitry described by the single-output
Boolean function f : Bk → B is plugged into the circuit as a
replacement for the gate at location l.

In this setting, the inputs of f could be any subset of the
primary inputs and the circuit gates not in the output cone of

Refine:

I := I ∧
{
N (x̂, p, q), f̂(x̂)

P(x̂, p, q), ¬f̂(x̂)

Restart:

I :=
∧

(x̂,r̂)∈D

{
N (x̂, p, q), ¬r̂
P(x̂, p, q), r̂

Guess:
p̂, q̂ |= ∃p, q.I(p, q) m < u

Check:
x̂ |= ∃x.¬Q(f̂(x), x)

Fail

Done

D := ∅, I = true, m := l

f̂(x) := Simplify(F (x, p̂, q̂))

false

true m := m+ 1

false

false

D := D ∪ {(x̂,¬f̂(x̂))}

true

3 4

1

2

Fig. 2. CEGAR-based bounded synthesis of a Boolean function in DNF.

g1

g2

g3

g4

g5

g6

x

x

x1

x2

x3

x4

x5

y1

y2

g1

g2

g3

g4

g5

?

x

x1

x2

x3

x4

x5

x5

x4

x3

x2

x1

y1

y2

i x1x2x3x4x5g1g2g3g4g5g6 ?

1. 0 0 0 0 0 0 0 0 1 0 1 true
2. 1 1 0 0 1 0 0 1 0 0 0 (x1)
3. 1 1 1 1 1 1 1 0 0 1 1 (g3)
4. 0 0 0 1 1 0 0 0 1 0 0 (x4·g3)∨(g2)
5. 0 0 0 1 0 0 0 0 1 0 1 (x5·g3)∨(g2)

Fig. 3. Incremental synthesis of a circuit patch by CEGAR-based EF synthesis.

gate l. Selecting the primary inputs only suffices to guarantee
completeness of the approach with respect to the term bound.
The more signals are additionally selected, the better are the
odds to find a small rectification by re-using existing logic.
The functional synthesis problem can then be formalized as
the second-order logic query

∃f.∀x.∃y.Rectify(f(x, y), x), (5)

where the additional variables y are introduced to describe
internal gates of C. The Boolean predicate encodes the cir-
cuit C and ensures that those y variables can only take value
compatible with the circuit structure and the input assignment
to x. Once the x values are chosen, the values for y are
totally determined such that the innermost quantifier can be
handled using the bounded EF synthesis approach for Boolean
functions as previously described.

Example 1. As an example, consider the combinational circuit
shown in Fig. 3, e.g., obtained after optimization. The circuit
has two faults marked for the reader with x symbols (in red) at
the respective gates. The fault locations, however, are actually
not known to the designer. A specification in terms of an un-
optimized, reference circuit is available and can be used for
functional verification and debugging, but does not shed light
on the exact problem for the behavioral mismatch of the two
circuits, e.g., because they are structurally too different. An
automated fault localization tool reveals that the circuit can
be fixed at the output of gate g6. The designer is now left
with the problem of determining a fix that rectifies the input-

output behavior of the circuit at g6. The problem of finding
a possible replacement can be formalized as an instance of
Eq. 5, as shown in Fig. 3, where a new combinational block ?
has to be synthesized using primary inputs or internal signals.
The table on the right shows the progress of the bounded
synthesis algorithm for synthesizing a patch at location g6,
where the counterexample that disproved functional equiva-
lence of the optimized and unoptimized circuits is provided
to the algorithm as an initial sample point. Each line shows
one mined input-output sample from the truth table of the
Boolean function to be synthesized and the corresponding
learned circuit patch in DNF (with at most 3 terms) that is
plugged into ? in the next iteration. After 5 iterations, a correct
patch is found and the algorithm terminates.

Don’t care optimization. The presented Boolean learning
scheme in Section III uses concrete input-output samples to
mine a Boolean function but does not make use of don’t cares.
Consider the rectification circuit shown in Fig. 4. The objective
is to synthesize the combinational block ? using the primary
inputs x1, x2 and x3 and the internal output signals of the gates
g1 and g2. Suppose that combinational equivalence checking
produces a sample -10-0 with correct output g4 = 0, where
x1 and g2 are don’t cares (denoted by -). The three-valued
assignment covers (among others) the concrete assignment
11000 which is uncontrollable in the circuit, i.e., g1 = 1
if x1 = 1 and x2 = 1. Thus, the don’t cares impose an
additional but unncessary constraint on the rectification that

g1

g2

g3

?

x1

x2

x1
x2
x3

g4

0

y1

Fig. 4. Overconstrainted learning by considering don’t care.

fixes g4 to 0 for 11000. In general, these additional constraints
may lead to the exclusion of possible fixes as well as cause a
significant performance overhead, e.g., when a simple solution
is missed and a much more complicated solution is found
later in the rectification process. However, since the additional
constraints stem from uncontrollable gate outputs, soundness
of the overall approach is not affected. In the worst-case, the
rectification can be implemented using only primary inputs,
which are assumed to be always controllable.

V. EXPERIMENTAL EVALUATION

The counterexample-guided EF synthesis approach was im-
plemented and evaluated in the context of circuit rectification
on the gate level. We used the approach to synthesize patches
for digital circuits with multiple seeded faults, where exactly
one location for rectifying the circuits is known.

Benchmarks. No standard benchmark set for circuit rec-
tification (with known faults) is available. Thus, we use the
ISCAS’85 benchmarks as well as the EPFL combinational
benchmark suite2 with seeded random faults. The rectifica-
tion approach does not rely on any assumptions about the
type of the seeded faults. However, for the experiments, we
seeded stuck-at faults as well as single negations on multiple
locations. To keep our implementation simple and flexible, all
circuits were first translated to And-Inverter Graphs (AIGs)
utilizing ABC [23]. From each circuit considered, then 10
faulty versions are generated. Each contains at least three faults
at random locations; however, a single location for rectifying
the circuit is known. These locations were computed using
the automated fault localization approach presented in [6].
Benchmarks that cannot be rectified at a single location were
not considered. For instance, in case of the multiplier c6288,
multiple seeded faults always propagate to multiple outputs
on independent paths such that a single rectification is not
possible. Since multiple faults are seeded at random locations
which are potentially far distanced from each other, in several
cases large logic cones have to be synthesized in order to
correctly rectify the circuits.

Experiments. All experiments are conducted on a quad-
core Intel R© CoreTM i5-2520M CPU with 2.50GHz and 8GB
RAM running Arch Linux kernel 4.5.4-1. The check-step
is implemented by leveraging the combinational equivalence
checker of ABC via its API interface. Each counterexample is
re-simulated on the circuit graph to obtain the output values
for all internal gates. For incrementally learning the candidate

2The EPFL Combinational Benchmark Suite, http://lsi.epfl.ch/benchmarks

TABLE I
BOUNDED PATCH SYNTHESIS UP TO 2-DNF

Name T/O := 100s / [l,u] := [1,2]

R U T n i tR tU tΣ
[s] [s] [s]

c17 9 1 0 7.00 7.30 0.01 0.01 0.01
c432 6 4 0 175.90 50.50 0.14 0.15 0.14
c499 0 10 0 285.30 53.50 0.00 0.99 0.99
c880 0 10 0 386.00 70.20 0.00 1.06 1.06
c1355 1 9 0 350.60 61.40 1.27 2.73 2.58
c1908 0 10 0 411.30 75.80 0.00 0.79 0.79
c2670 1 9 0 948.80 157.10 4.06 18.52 17.07
c3540 0 10 0 1030.10 152.50 0.00 21.62 21.62
c5315 0 0 10 1922.10 120.60 0.00 0.00 99.91
c7552 1 0 9 2275.40 169.60 0.79 0.00 90.05
cavlc 0 10 0 702.00 103.60 0.00 2.07 2.07
ctrl 10 0 0 174.00 13.50 0.03 0.00 0.03
int2float 0 9 1 270.00 60.00 0.00 0.27 0.25
max 0 5 5 2419.60 184.60 0.00 65.93 82.96
priority 0 10 0 1105.00 120.80 0.00 5.53 5.53
router 1 9 0 293.90 45.70 0.50 0.58 0.57
sin 0 0 10 5245.30 236.30 0.00 0.00 100.00

Total 29 106 35 1059.04 99.00 0.27 8.02 25.04

functions, we used the SAT solver MiniSAT 2.2.03 via its API
interface. Table I and Table II present experimental results
for circuit rectification with the term bounds m ≤ 2 and
m ≤ 3, respectively. In total, we attempt to rectify 170
circuits. For each rectification problem, time was limited to
T/O := 100s. Both tables are built as follows: the first column
names the benchmark, followed by three columns that list the
number of successfully rectified circuits (R), the number of
identified unrectifiable circuits (U) within the term bound,
and the number of timeouts (T). The next two columns list
the mean number of variables (n) as an indication of the
complexity of the Boolean learning problem and the mean
number of iterations (i) needed for rectification. The last three
columns list the mean runtimes in seconds for successful
rectification (tR), identified unrectifiable circuits (tU), and
mean total runtime (tΣ), respectively. The last line summarizes
the results for all benchmarks.

Discussion. The CEGAR-based EF synthesis algorithm was
able to rectify 29 benchmarks for m ≤ 2 terms and 40 for
m ≤ 3 terms and, moreover, proved 106 benchmarks for
m ≤ 2 and 17 for m ≤ 3 as “unrectifiable”, respectively. The
minimal number of terms sufficient for rectification for the
circuit benchmarks are not known. We are interested in small
rectification and, thus, restrict the number of terms to at most
2 or 3 terms. Notice that the rectification is fast when possible
— less than 1s in all cases. Proving that a rectification is not
possible, however, is typically costly because all possibilities
over all variables have to be taken into account. Increasing the
time bound, however, does not help. Only for two benchmarks,
the results are affected when the time bound is increased to
200s. On the other hand, the successful rectifications are still
generated if the time bound is decreased, e.g., to 5 seconds.
This is also true if a lower bound of m ≥ 5 (or more) is

3MiniSAT [24], http://minisat.se/MiniSat.html

TABLE II
BOUNDED PATCH SYNTHESIS UP TO 3-DNF

Name T/O := 100s / [l,u] := [1,3]

R U T n i tR tU tΣ
[s] [s] [s]

c17 9 1 0 7.00 7.80 0.02 0.01 0.01
c432 7 3 0 175.90 72.80 0.31 38.90 11.89
c499 0 0 10 285.30 97.70 0.00 0.00 99.99
c880 0 0 10 386.00 124.90 0.00 0.00 99.89
c1355 1 0 9 350.60 97.30 1.28 0.00 90.01
c1908 0 0 10 411.30 144.40 0.00 0.00 99.84
c2670 1 0 9 948.80 239.40 4.53 0.00 90.28
c3540 0 0 10 1030.10 278.50 0.00 0.00 99.76
c5315 0 0 10 1922.10 120.30 0.00 0.00 99.88
c7552 1 0 9 2275.40 168.70 0.89 0.00 89.87
cavlc 3 1 6 702.00 232.20 3.14 96.89 70.59
ctrl 10 0 0 174.00 13.50 0.03 0.00 0.03
int2float 5 4 1 270.00 141.60 1.12 20.11 8.61
max 0 0 10 2419.60 245.40 0.00 0.00 99.72
priority 1 1 8 1105.00 237.70 5.58 19.40 82.48
router 2 7 1 293.90 84.90 0.62 3.33 12.45
sin 0 0 10 5245.30 236.20 0.00 0.00 99.97

Total 40 17 113 1058.96 149.61 0.78 19.81 67.96

considered for the number of terms.
Boolean learning does not use any information from the cir-

cuit structure except for the input-output samples constructed
during equivalence checking. Hence, the internal complexity
of a benchmark circuit does not impact the performance,
if equivalence checking is fast enough to produce input-
output samples, but is mainly determined by the number of
variables to consider. For all benchmarks, we consider all
primary inputs and the outputs of all internal gates as variables.
Existing techniques are mostly orthogonal to our work and
can be combined with the proposed rectification approach. For
instance, entropy-guided search [21] provides a necessary (but
not sufficient) criterion for selecting a subset of variables that
are sufficient for synthesis, which allows to reduce the size of
the search space without excluding possible solutions.

VI. CONCLUSION

We presented a generalized EF synthesis approach in the
context of Boolean logic that allows to existentially quantify
over the domain of Boolean functions (rather than Boolean
variables) and described a counterexample-guided algorithm
for generating them using Boolean learning. The algorithm
incrementally refines a candidate function in DNF bounded
by the number of terms until either a provided correctness
specification is met or the algorithm proves that no function
within the given term bound exists. As an application, we
described circuit rectification as an EF synthesis problem
and applied the present approach to incrementally synthesize
patches for combinational circuits with multiple faults.

ACKNOWLEDGMENT

This work was supported by the European Union (grant
no. 644905) and the Institutional Strategy of the University of
Bremen, funded by the German Excellence Initiative.

REFERENCES

[1] A. Solar-Lezama, “Program sketching,” Software Tools for Technology
Transfer, vol. 15, no. 5-6, pp. 475–495, 2013.

[2] M. Janota, W. Klieber, J. Marques-Silva, and E. M. Clarke, “Solving
QBF with counterexample guided refinement,” in Theory and Applica-
tions of Satisfiability Testing, 2012, pp. 114–128.

[3] M. Janota, W. Klieber, J. Marques-Silva, and E. M. Clarke, “Solving
QBF with counterexample guided refinement,” Artificial Intelligence,
pp. 1–25, 2016.

[4] C. Cheng, N. Shankar, H. Ruess, and S. Bensalem, “EFSMT: A logical
framework for cyber-physical systems,” CoRR, vol. abs/1306.3456,
2013. [Online]. Available: http://arxiv.org/abs/1306.3456

[5] H. Riener, R. Könighofer, G. Fey, and R. Bloem, “SMT-based CPS
parameter synthesis (tool presentation),” in ARCH Workshop, 2016.

[6] H. Riener and G. Fey, “Exact diagnosis using Boolean satisfiability,” in
International Conference on Computer Aided Design, 2016, to Appear.

[7] R. Bloem, N. Braud-Santoni, and S. Jacobs, “Synthesis of self-stabilizing
and byzantine-resilient distributed systems,” in Computer Aided Verifi-
cation, 2016, pp. 157–176.

[8] R. Alur, R. Bodı́k, E. Dallal, D. Fisman, P. Garg, G. Juniwal, H. Kress-
Gazit, P. Madhusudan, M. M. K. Martin, M. Raghothaman, S. Saha,
S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa,
Dependable Software Systems Engineering. IOS Press, 2015, ch.
Syntax-Guided Synthesis, pp. 1–25.

[9] A. Reynolds, M. Deters, V. Kuncak, C. Tinelli, and C. W. Barrett,
“Counterexample-guided quantifier instantiation for synthesis in SMT,”
in Computer Aided Verification, 2015, pp. 198–216.

[10] A. P. Kamath, N. Karmarkar, K. G. Ramakrishnan, and M. G. C.
Resende, “A continuous approach to inductive inference,” Mathematical
Programming, vol. 57, pp. 215–238, 1992.

[11] D. E. Knuth, The Art of Computer Programming, Volume 4, Pre-Fascicle
6a: A (partial draft) of Section 7.2.2.2: Satisfiability. Addison-Wesley,
2015.

[12] A. G. Veneris and I. N. Hajj, “A fast algorithm for locating and correcting
simple design errors in VLSI digital circuits,” 1997, pp. 45–50.

[13] D. Brand, A. D. Drumm, S. Kundu, and P. Narain, “Incremental
synthesis,” in International Conference on Computer Aided Design,
1994, pp. 14–18.

[14] S. Krishnaswamy, H. Ren, N. Modi, and R. Puri, “DeltaSyn: An
efficient logic difference optimizer for ECO synthesis,” in International
Conference on Computer Aided Design, 2009, pp. 789–796.

[15] S.-Y. Huang, K.-C. Chen, and K.-T. Cheng, “AutoFix: A hybrid tool for
automatic logic rectification,” Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 18, no. 9, pp. 1376–1384, 1999.

[16] S.-L. Huang, W.-H. Lin, P.-K. Huang, and C.-Y. R. Huang, “Match and
replace: A functional ECO engine for multierror circuit rectification,”
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 13, no. 3, pp. 467–478, 2013.

[17] Y. Watanabe and R. K. Brayton, “Incremental synthesis for engineering
changes,” in International Conference on Computer Design, 1991, pp.
40–43.

[18] M. Fujita, Y. Tamiya, Y. Kukimoto, and K.-C. Chen, “Application of
Boolean unification to combinational logic synthesis,” in International
Conference on Computer Aided Design, 1991, pp. 510–513.

[19] C.-C. Lin, K.-C. Chen, S.-C. Chang, M. Marek-Sadowska, and K.-T.
Cheng, “Logic synthesis for engineering change,” in Design Automation
Conference, 1995, pp. 647–652.

[20] C.-C. Lin, K.-C. Chen, and M. Marek-Sadowska, “Logic synthesis
for engineering change,” Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 18, no. 3, pp. 282–292, 1999.

[21] K.-H. Chang, I. L. Markov, and V. Bertacco, “Fixing design errors
with counterexamples and resynthesis,” Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 27, no. 1, pp.
184–188, 2008.

[22] ——, “Automating postsilicon debugging and repair,” IEEE Computer,
vol. 41, no. 7, pp. 47–54, 2008.

[23] R. K. Brayton and A. Mishchenko, “ABC: An academic industrial-
strength verification tool,” in Computer Aided Verification, 2010, pp.
24–40.

[24] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Theory and
Applications of Satisfiability Testing, 2003, pp. 502–518.

