
The EPFL Logic Synthesis Libraries in Action:
A Development Snapshot of mockturtle & tweedledum

Heinz Riener and Bruno Schmitt
EPFL, Lausanne, CH



EPFL Logic Synthesis Libraries
Collection of open-source SW libraries for logic synthesis applications:

● Two years development
● Funded by EPFL’s Open Science Fund
● 9 open source libraries in C++
● Modularity & composability

Two “flagship” libraries:

● mockturtle: a C++ logic network library
(https://github.com/lsils/mockturtle)

● tweedledum: a C++ quantum compilation library 
(https://github.com/boschmitt/tweedledum)

https://github.com/lsils/mockturtle
https://github.com/boschmitt/tweedledum


EPFL Libraries as Research Enabler
Modular software libraries in C++:

● State-of-the-art implementations
● Well-documented & -tested
● Header-only: easy to integrate

Users can tackle complex research problems

Logic optimizations are used to outside of hardware design:

● Pre- and post-processing in constraint solving
● Simplifying circuit verification problems
● Analyzing hardness of cryptographic circuits/logic encryption
● Optimization in high-level synthesis (or reactive synthesis)

LSOracle

fiction

lgraph

z3

Mathias Soeken et al., The EPFL Logic Synthesis Libraries, arXiv:1805.05121v2, 2019.



mockturtle: a C++ logic network library
Flexible logic network library for research

● Inspired by C++ concepts
● Composability: Uses template metaprogramming to decouple implementation 

of logic networks from algorithms
● Views: Add or remove methods to a logic network

Read 
network

Rewrite 
network

AIG, AIGv2, MIG, ... AIG, AIGv2, MIG, ...



Scalable Generic Logic Synthesis

● “Scalable” = Similar to Mishchenko & Brayton 2006, but not limited to AIG
● “Genericness” = Network type in all algorithms is a template parameter

○ Syntax: methods exist and get the right parameters (checked by compiler)
○ Semantics: methods implement the expected semantics (network interface API)

● Agnostic of the gate type
● Can be implemented once and will work for all network types 

that provide the methods:
○ foreach_input
○ foreach_gate
○ foreach_fanin
○ foreach_output

Alan Mishchenko and Robert Brayton, Scalable logic synthesis using a simple circuit structure, IWLS, 2016.
Heinz Riener et al., Scalable Generic Logic Synthesis: One Approach to Rule Them All. DAC 2019.



Open-Sourced in GitHub

mockturtle has been public since April 25, 2018

● Link: https://github.com/lsils/mockturtle

https://github.com/lsils/mockturtle


Improved Robustness and Testing

● Coverage analysis and testing
● More benchmarks, fuzz testing, delta debugger?
● Bugfixes (based on GitHub contributors): Marcel Walter, Bruno Schmitt, 

Walter Lau Neto, Jinzheng Tu, Sahand Kashani, Max Austin, Jovan Blanusa, 
Giulia Meuli, ...



Research Contributions

● Optimization algorithms of majority logic networks (Eleonora Testa)
● Exact synthesis of circuit structures (Winston Haaswijk)
● Logic optimizations for XMGs (Zhufei Chu and Shubham Rai)
● Multiplicative complexity and multiplicative depth analysis (Mathias Soeken)
● Technology and logic mapping (Alessandro Tempia Calvino)
● Logic optimization for superconducting technologies (Dewmini Marakkalage)
● Generalized Boolean resynthesis (Siang-Yun Lee)
● Buffered networks (Siang-Yun Lee)
● ...



Future Research & Challenges

Improved scalability:

● Better quality-of-results with equal resource budget

Concurrency & parallelization:

● New algorithms to take advantage of modern hardware
● Support of modern C++ for concurrency enables new compiler optimizations

Flow scripts for mockturtle

Better debugging and testing infrastructure

Better support for nano-emerging technologies



The EPFL Logic Synthesis Libraries in Action:
A Development Snapshot of mockturtle & tweedledum

Heinz Riener and Bruno Schmitt
EPFL, Lausanne, CH


